Способы определения координат местоположения самолета. Радиотехнические методы определения местоположения объектов. В дискретные моменты времени, выбранные на равномерной сетке с началом координат и шагом, наблюдатель осуществляет измерение угла пеленга н




Радиотехнические методы внешнетраекторных измерений

Аппаратура внешнетраекторных измерений, основанная на радиотехническом принципе, по сравнению с оптической обладает большей дальностью слежения и более универсальна. Она позволяет определять не только угловые координаты ЛА, но и дальность до объекта, его скорость, направляющие косинусы линии дальности и т.д.

Измерение дальности в радиотехнических системах сводится к определению времени задержки t D прихода излучаемых или отраженных радиосигналов, которые пропорциональны дальности

D=ct D ,

где с =3×10 8 м/с - скорость распространения радиоволн.

В зависимости от вида используемого сигнала определение t D может производиться измерением фазового, частотного или непосредственно временного сдвига, относительно опорного сигнала. Наибольшее практическое применение нашли импульсный (временной) и фазовой методы. В каждом из них измерение дальности может осуществляться как беззапросным , так и запросным способом. В первом случае дальность D=ct D , во втором - D=0,5ct D .

При беззапросном импульсном методе на борту ЛА и на Земле устанавливаются высокоточные хронизаторы х 1 и х 2 , синхронизируемые перед запуском (Рис. 9.5). В соответствии с импульсами u 1 хронизатора х 1 бортовой передатчик П излучает импульсные сигналы с периодом Т . Наземное приемное устройство П р принимает их через t D =D/c . Интервал t D между импульсами наземного хронизатора u 2 и импульсами u 1 на выходе приемника соответствует измеряемой дальности.

При запросном импульсном методе сигнал посылается наземным передатчиком, принимается бортовым приемником и ретранслируется обратно.

Рис. 9.5. Принцип измерения дальности импульсным беззапросным методом.

Точность этих методов повышается с увеличением частоты импульсов.

Фазовый метод измерения дальности заключается в том, что запаздывание сигнала определяется по фазовому сдвигу между запросным и ответным сигналом (Рис. 9.6).

Рис. 9.6. Фазовый метод измерения дальности

Наземный передатчик излучает колебания:

u 1 =A 1 sin(w 0 t+j 0)=A 1 sinj 1 ,

где А 1 - амплитуда,

w 0 - круговая частота,

j 0 - начальная фаза,

j 1 - фаза колебаний сигнала.

Бортовая аппаратура ретранслирует сигнал u 1 , а наземный приемник принимает сигнал

u 2 =A 2 sin=A 2 sinj 2 ,

где j А - фазовый сдвиг, обусловленный прохождением сигнала в аппаратуре, определяемый расчетным или экспериментальным путем.

Изменение фазы колебаний сигнала u 2 относительно u 1 определяется отношением:

j D =j 2 -j 1 =w 0 t D =LpD/(T 0 c),

откуда дальность

где l 0 - длина волны.

При измерении угловых параметров движения ЛА радиотехническими средствами наибольшее распространение получили амплитудные и фазовые методы.



Амплитудный метод основан на сравнении амплитуд сигналов при различных положениях передающей или принимающей антенны. При этом возможны два варианта выполнения угломерных систем: амплитудные пеленгаторы и маяки. В первом случае передающее устройство П располагается на ЛА, а диаграмма направленности наземного приемного устройства П р периодически занимает положение I или II (Рис. 9.7).

Рис. 9.7. Амплитудный метод измерения угловых параметров

Если угол a =0, то уровень сигнала при обоих положениях диаграммы направленности будет одинаковым. Если a ¹0, то амплитуды сигналов будут различны, и по их разности можно вычислить угловое положение ЛА.

В том случае, когда информацией об угловом положении надо располагать на борту ЛА, применяют амплитудный маяк . Для этого на земле устанавливается передатчик, а диаграмма направленности наземной антенны сканирует, периодически занимая положения I и II. Сравнивая амплитуды сигналов, принимаемых бортовым приемником, определяется угловое положение ЛА.

Фазовый метод основан на измерении разности расстояний от ЛА до двух базисных точек О 1 и О 2 (Рис. 9.8).

Рис. 9.8. Фазовый метод определения угловых параметров

При этом расстояния до объекта R 1 и R 2 определяются по разности фаз Dj гармонических колебаний, излучаемых источником, расположенном в пунктах О 1 и О 2 . Косинус направляющего угла q определяется:

где В - расстояние между пунктами О 1 и О 2 .

Примером комплекса внешнетраекторных измерений, применяемом в полигонной практике, может служить система «Трасса» (Рис. 9.10). Данная аппаратура, разработанная и выпускаемая СКБ измерительной аппаратуры НТИИМ, использует координатно-угломеро-базовый принцип.

Она состоит из двух следящих телевизионных теодолитов 1, системы управления 2, системы синхронизации единого времени 3, системы регистрации и обработки информации 4. Система «Трасса» позволяет получать информацию о координатах, скорости, коэффициенте лобового сопротивления, а также наблюдать поведение объекта на экране монитора.

Рис. 9.10. Система внешнетраекторных измерений “Трасса”:

1-следящий телевизионный теодолит; 2-система управления; 3-система синхронизации единого времени; 4-системы регистрации и обработки информации

Основные характеристики системы «Трасса» приведены ниже:

Погрешность измерения угловых координат при угле места до 60 град:

В статике - 15 угл.сек

В динамике - 30 угл.сек,

Максимальные параметры сопровождения объекта

Угловая скорость - 50 град/сек,

Угловое ускорение - 50 град/сек 2 ,

Частота регистрации угловых координат изображений объекта – 25-50 кадров/сек.

Важнейшей задачей внешнебаллистических исследований является определение пространственного местоположения центра масс ЛА, которое однозначно определяется тремя пространственными координатами. При этом в навигации используются понятия поверхностей и линий положения.

Под поверхностью положения понимают геометрическое место точек местоположения ЛА в пространстве, характеризуемое постоянным значением измеряемого навигационного параметра (например, угла места, угла азимута, дальности и т.п.). Под линией положения , понимают пересечение двух поверхностей положения.

Положение точки в пространстве может быть определено пересечением двух линий положения, трех поверхностей положения и линии положения с поверхностью положения.

В соответствии с видом измеряемых параметров различают следующие пять методов определения местоположения ЛА: угломерный, дальномерный, суммарно и разностно-дальномерный и комбинированный.

Угломерный метод основан на одновременном измерении углов визирования ЛА из двух различных точек. Он может быть основан как на оптическом, так и на радиотехническом принципах.

При кинотеодолитном методе поверхностью наложения при a=const является вертикальная плоскость, а поверхностью положения при b=const - круговой конус с вершиной в точке О (Рис. 9.11, а).

Рис. 9.11. Определение координат объекта кинотеодолитным методом,

а) поверхность и линия положения, б) схема определения координат

Пересечение их определяет линию положения, совпадающую с образующей конуса. Следовательно для определения местоположения ЛА необходимо определить координаты точки пересечения двух линий положения OF 1 и OF 2 (Рис. 9.11, б), полученных одновременно с двух измерительных пунктов О 1 и О 2 .

В соответствии с рассматриваемой схемой координаты ЛА определяются по формулам:

где В - расстояние между измерительными пунктами,

R - радиус Земли в данной местности.

При использовании дальномерного метода координаты ЛА определяются точкой пересечения трех сферических поверхностей положения с радиусами, равными дальности D . Однако при этом возникает неопределенность, связанная с тем, что три сферы имеют две точки пересечения, для исключения которой используют дополнительные способы ориентирования.

Разностно и суммарно-дальномерный метод основан на определении разности или суммы дальностей от ЛА до двух измерительных пунктов. В первом случае поверхностью положения является двухполостной гиперболоид и для определения координат объекта необходимо иметь еще одну (ведущую) станцию. Во втором случае поверхность положения имеет вид эллипсоида.

Комбинированный метод обычно используется в радиолокационных системах, когда местоположение ЛА определяется как точка пересечения сферической поверхности положения с радиусом равным дальности (D=const ), конической поверхности положения (b=const ) и вертикальной поверхности положения (a=const ).

Доплеровский метод определения скорости и местоположения ЛА основан на эффекте изменения частоты несущего сигнала, излучаемого передатчиком и воспринимаемого приемным устройством в зависимости от скорости их относительного перемещения:

F д =¦ пр -¦ 0 ,

где F д - частота Доплера,

¦ пр - частота принимаемого сигнала,

¦ 0 - частота передаваемого сигнала.

Измерение частоты Доплера может быть проведено беззапросным или запросным методом. При беззапросном методе радиальная скорость ЛА при длине волны сигнала l 0 , определяется:

V r =F д l 0 ,

при запросном методе:

V r =F д l 0 /2.

Для определения дальности следует проинтегрировать результаты измерения скорости полета за время движения объекта от начальной точки. При расчете координат используются зависимости для суммарно-дальномерных систем.

Схемы определения параметров ЛА, основанные на эффекте Доплера, приведены на рисунке 9.12.

Рис. 9.12. Схема определения координат ЛА доплеровским методом:

а) без ретрансляции сигналов, б) с ретрансляцией сигналов

При проведении внешнетраекторных измерений движения ЛА малых размеров (пуль, артиллерийских и реактивных снарядов) используются доплеровские полигонные радиолокационные станции ДС 104, ДС 204, ДС 304 изготавливаемые НТИИМ.

Рис. 9.13. Доплеровские полигонные радиолокационные станции

ДС 104, ДС 204, ДС 304

Они используют запросный метод и позволяют определять скорости на любом участке траектории, текущие координаты в вертикальной плоскости, вычислять ускорения, числа Маха, коэффициент лобового сопротивления, средние и срединные отклонения начальной скорости в группе выстрелов.

Основные технические характеристики станции ДС 304 следующие:

Минимальный калибр - 5мм,

Диапазон скоростей - 50 – 2000 м/с,

Дальность действия - 50000 м,

Погрешность измерения скорости - 0,1%,

Частота зондирующего сигнала - 10,5 ГГц,

Уровень генерируемой мощности сигнала - 400 мВт.

По совокупности измеряемых геометрических параметров системы определения местоположения источников ЭМИ подразделяются :

· на триангуляционные (угломерные, пеленгационные);

· разностно-дальномерные;

· угломерно-разностно-дальномерные.

Вид и количество измеряемых геометрических величин определяют пространственную структуру системы определения местоположения источника ЭМИ: количество пространственно разнесенных приемных пунктов сигналов источника ЭМИ и геометрию их расположения.

Триангуляционный (угломерный, пеленгационный) метод основан на определении направлений (пеленгов) на источник ЭМИ в двух точках пространства с помощью радиопеленгаторов, разнесенных на базу d (рис. 18,а).

Рис. 18. Пояснение триангуляционного метода определения местоположения источника ЭМИ на плоскости (а) и в пространстве (б)

Если источник ЭМИ располагается в горизонтальной или вертикальной плоскости, то для определения его местоположения достаточно измерить два угла азимута ц1 и ц2 (или два угла места). Местоположение источника ЭМИ определяется точкой пересечения прямых О1И и О2И - двух линий положения.

Для определения местоположения источника в пространстве измеряют углы азимута ц а1 и ц а2 в двух разнесенных точках О1 и О2 и угол места цм1 в одной из этих точек или, наоборот, углы места цм1 и цм2 в двух точках приема и угол азимута ц а1 в одной из них (рис. 18,б).

Расчетным путем может быть определена дальность от одной из приемных точек до источника по измеренным углам и известной величине базы d:

отсюда приравняем два выражения для h:

Таким образом, дальность до источника

Триангуляционный метод прост в технической реализации. Поэтому широко применяется в системах радио- и РТР, в пассивных радиолокационных разнесенных системах при обнаружении и определении координат излучающих объектов.

Существенным недостатком триангуляционного метода является то, что при увеличении количества источников ЭМИ, находящихся в зоне действия радиопеленгаторов, могут происходить ложные обнаружения несуществующих источников (рис. 19). Как видно из рис.19, наряду с определением координат трех истинных источников И1, И2 и И3 обнаруживаются и шесть ложных источников ЛИ1, …, ЛИ6. Исключить ложные обнаружения при применении триангуляционного метода можно путем получения избыточной информации о пеленгуемых источниках - увеличением количества разнесенных радиопеленгаторов или опознаванием принадлежности получаемой информации к определенному источнику. Опознавание может быть проведено при сравнении сигналов, принимаемых радиопеленгаторами, по несущей частоте, периоду следования и длительности импульсов

Рис. 19.

Дополнительную информацию об источниках получают и за счет взаимно корреляционной обработки сигналов, принимаемых в разнесенных точках пространства.

Устранение ложных обнаружений при применении триангуляционного метода возможно также за счет получения данных о разности дальностей от источника излучения до пунктов приема (пунктов расположения радиопеленгаторов). Если точка пересечения линий пеленгов не лежит на гиперболе, соответствующей разности дальностей, то она является ложной.

Разностно-дальномерный метод определения местоположения основан на измерении с помощью РЭС разности дальностей от источника ЭМИ до пунктов приема, разнесенных в пространстве на расстояние d. Местоположение источника на плоскости находится как точка пересечения двух гипербол (две разности дальностей, измеренные в трех приемных пунктах), принадлежащих различным базам А1А2, A2A3 (рис. 20). Фокусы гипербол совпадают с точками расположения пунктов приема.

Рис. 20.

Пространственное положение источников ЭМИ определяется по трем разностям дальностей, измеряемым в трех-четырех приемных пунктах. Местоположение источника - точка пересечения трех гиперболоидов вращения.

Угломерно-разностно-дальномерный метод определения местоположения предполагает измерение с помощью РЭС разности дальностей от источника ЭМИ до двух разнесенных приемных пунктов и измерение направления на источник в одном из этих пунктов.

Для определения координат источника на плоскости достаточно измерить азимут ц и разность дальностей АД от источника до точек приема. Местоположение источника определяется точкой пересечения гиперболы и прямой.

Для определения положения источника в пространстве необходимо дополнительно измерить в одной из точек приема угол места источника ЭМИ. Местоположение источника находится как точка пересечения двух плоскостей и поверхности гиперболоида.

Ошибки определения местоположения источника ЭМИ на плоскости зависят от ошибок измерения двух геометрических величин:

· двух пеленгов в триангуляционных системах;

· двух разностей дальностей в разностно-дальномерных системах;

· одного пеленга и одной разности дальностей в угломерно-разностно-дальномерных системах.

При центрированном гауссовском законе распределения ошибок определения линий положения среднеквадратическое значение ошибки определения местоположения источника:

где - дисперсии ошибок определения линий положения; r - коэффициент взаимной корреляции случайных ошибок определения линий положения Л1 и Л2; г - угол пересечения линий положения.

При независимых ошибках определения линий положения r = 0.

При триангуляционном методе определения местоположения источника

Среднеквадратическая ошибка определения местоположения

При применении идентичных радиопеленгаторов

Наибольшая точность будет при пересечении линий положения под прямым углом (г = 90°).

При оценке ошибок определения местоположения источника в пространстве необходимо рассматривать ошибки измерения трех геометрических величин. Ошибка определения местоположения зависит в этом случае от взаимной пространственной ориентации поверхностей положения. Наивысшая точность определения положения будет при пересечении нормалей к поверхностям положения под прямыми углами.

Изобретение относится к области радиотехники, а именно к системам радиоконтроля для определения координат местоположения источников радиоизлучения (ИРИ). Достигаемый технический результат - снижение аппаратных затрат. Предлагаемый способ основан на приеме сигналов ИРИ антеннами, измерении разности времени приема сигнала от ИРИ в нескольких точках пространства сканирующими радиоприемными устройствами, преобразованных в систему уравнений, а также основан на использовании двух одинаковых, стационарных радиоконтрольных постов (РП), один из которых принимают за ведущий, соединяя с другим линией связи, при этом калибруют измеритель величины запаздывания прихода сигналов на (РП), используя эталонные радиоэлектронные средства (РЭС) с известными параметрами сигналов и координатами местоположения, затем на РП осуществляют квазисинхронное сканирование и измерение уровней сигналов на заданных фиксированных частотах настройки и величину запаздывания прихода сигналов ИРИ. Информацию с ведомого РП передают на ведущий, где вычисляют отношение уровней и разность запаздывания прихода сигналов ИРИ с учетом результатов калибровки измерителей, а также составляют два уравнения положения ИРИ, каждое из которых описывает окружность с радиусом, равным расстоянию от РП до ИРИ. Расстояния при этом определяют через отношение уровней сигналов и разность времени приема сигнала, измеренных на РП с использованием только одной пары антенн с известными азимутом оси главного лепестка и диаграммой направленности, главный лепесток каждой из которых расположен в разных полуплоскостях относительно линии базы, а координаты ИРИ определяют численным методом решения составленных уравнений, принимая за истинные лишь координаты, относящиеся в той полуплоскости относительно линии базы, в которой находится главный лепесток антенны с наибольшим уровнем принятого сигнала. Устройство, реализующее способ, содержит два одинаковых РП, один из которых является ведущим, и на каждом посту содержит направленные антенны, измерительный сканирующий радиоприеник, измеритель величины запаздывания прихода сигналов, компьютер и устройство связи, определенным образом соединенные между собой. 2 н.п. ф-лы, 2 ил.

Рисунки к патенту РФ 2510038

Изобретение относится к области радиотехники, а именно к системам радиоконтроля для определения координат местоположения источников радиоизлучения (ИРИ), сведения о которых отсутствуют в базе данных (например, государственной радиочастотной службы или государственной службы надзора за связью). Изобретение может быть использовано при поиске местоположения несанкционированных средств связи.

Известны способы определения координат ПРИ, в которых используются пассивные пеленгаторы в количестве не менее трех, центр тяжести области пересечения выявленных азимутов которых на фронт прихода волны принимается за оценку местоположения. Основными принципами работы таких пеленгаторов являются амплитудные, фазовые и интерферометрические . Широко применяемым является амплитудный способ пеленгования, при котором используется антенная система, имеющая, диаграмму направленности с ярко выраженным максимумом главного лепестка и минимальными задним и боковыми лепестками. К таким антенным системам относятся, например, логопериодические или, антенны, имеющие кардиоидную характеристику и др. При амплитудном способе механическим вращением добиваются положения антенны, при котором выходной сигнал имеет максимальную величину. Такое направление принимают за направление на ИРИ. К недостаткам большинства пеленгаторов следует отнести высокую степень сложности антенных систем, коммутационных устройств и наличие многоканальных радиоприемников, а также необходимость в быстродействующих системах обработки информации.

Наличие в федеральных округах государственной радиочастотной службы взаимосвязанных через центральный пункт разветвленной сети радиоконтрольных постов, оборудованных средствами приема радиосигналов, измерения и обработки их параметров, позволяет дополнить их функции и задачами определения координат местоположения тех ИРИ, сведения о которых отсутствуют в базе данных, не прибегая к использованию сложных и дорогостоящих пеленгаторов.

Известен способ , в котором для определения координат местоположения ИРИ используют N, не менее четырех, стационарных радиоконтрольных постов, расположенных не на одной прямой, один из которых принимают за базовый, соединяя с остальными N-1 постами линиями связи, на всех постах осуществляют квазисинхронное сканирование по заданным фиксированным частотам настройки, усредняют измеренные значения уровней сигналов на каждой из сканируемых частот, а затем на базовом посту для каждого из сочетаний C 4 N (сочетаний из N по 4) на основании обратно пропорциональной зависимости отношений расстояний от поста до источника радиоизлучения и соответствующих им разностей уровней сигналов, выраженных в дБ, составляют три уравнения, каждое из которых описывает окружность равных отношений, по параметрам двух любых пар которых и определяют текущее среднее значение широты и долготы местоположения источника радиоизлучения. Недостатком этого способа является большое количество стационарных постов радиоконтроля.

Известны способы и устройства пеленгования (4, 5), которые могут быть использованы для целей определения координат.

Способ (4) основан на приеме сигналов тремя антеннами, образующими две пары измерительных баз, измерении разностей времени прихода сигналов ИРИ и детерминированных вычислений искомых координат.

К недостаткам способа следует отнести:

1) Большое количество антенн.

2) Способ не ориентирован на использование радиоконтрольных постов.

3) Измерительные базы для вычисления разности времен прихода сигналов ПРИ парами антенн существенно ограничивают разнос этих антенн, не говоря о нецелесообразности и большой технической сложности реализации способа.

Разнесенный разностно-дальномерный пеленгатор (5), состоящий из двух периферийных пунктов, центрального и системы единого времени, преследует цель разгрузить канал связи между пунктами. Периферийные пункты предназначены для приема, хранения, обработки сигналов и передачи фрагментов сигналов на ЦП, на котором вычисляется разность времени прихода сигналов. В системе единого времени применяется хронизатор, представляющий собой привязанный к шкале единого времени хранитель шкалы текущего времени (часы), предназначенный для привязки записываемых в ЗУ значений уровня сигнала к значению времени приема.

Данному пеленгатору свойственны следующие недостатки:

1) Не адаптирован к радиоконтрольным пунктам, используемым в филиалах федеральных округов государственной радиочастотной службы или государственной службы надзора за связью.

2) Большое количество специализированных пеленгационных (но не радиоконтрольных) постов.

3) Необоснованное и не раскрытое (хотя бы до функциональной схемы) применение системы единого времени на ЦП и хронизаторов на ПП, синхронизированных с системой единого времени.

4) Необходимость в наличии радиоканалов с большой пропускной способностью (до 625 Мбод) для передачи даже фрагментов сигналов с ПП1 и ПП2 на ЦП.

5) Для организации радиоканала необходимы радиопередающие устройства и получение разрешения на их работу в определенных условиях эксплуатации.

Известен разностно-дальномерный способ определения координат источника радиоизлучения и реализующее его устройство (6).

Способ, основанный на приеме сигналов ИРИ четырьмя антеннами, образующими три независимые измерительные базы, в разнесенных точках A, B, C, D таким образом, что объем фигуры, образованный из этих точек, больше нуля (V A,B,C,D >0). Сигнал одновременно принимается на все антенны, измеряют три независимые разности времени t AC , t BC , t DC приема сигнала парами антенн, образующих измерительные антенные базы (АС), (ВС) и (DC). По измеренным разностям времен вычисляют разности дальностей от ИРИ до пар точек (А, С), (В, С), (D, C), для k-й тройки антенн, расположенных в точках А, В, С при k=1, B, C, D при k=2, D, C, A при k=3, вычисляют с помощью измеренных разностей дальностей значения угла k , характеризующие угловое положение плоскости положения ИРИ k , k=1, 2, 3 относительно соответствующей измерительной базы, и координаты точки F k принадлежащей k-й плоскости положения ИРИ, вычисляют искомые координаты ИРИ как координаты точки пересечения трех плоскостей положения ИРИ k , k=1, 2, 3 каждая из которых характеризуется координатами точек расположения k-й тройки антенн и вычисленными значениями угла k и координатами точки F k , отображают результаты вычисления координат ИРИ в заданном формате.

Этот способ и устройство, его реализующее, ближе к заявляемому, но также обладает рядом существенных недостатков:

1) Сложность практической реализации способа в связи с отсутствием возможности измерении разностей времен приема сигнала ИРИ только антеннами (измерительные радиоприемники в блок-схеме отсутствуют).

2) Необходимость сведения сигналов ИРИ с разнесенных на оптимальное расстояние до 0,6-0,7 R ЭМД антенн согласно (2) в одну точку, что практически реализовывать нецелесообразно.

3) Обеспечить измерение разности времени приема сигнала ИРИ на конкретных заданных частотах непосредственно с антенн (без использования радиоприемников, которые на блок-схеме не отображены) весьма сложно.

4) Для измерения разности времени приема сигнала непосредственно с антенн используются двухвходовые измерители.

5) Сложность технической реализации, обусловленная большим количеством различных вычислителей.

6) Неопределенность в построении поверхности положения в виде плоскости, перпендикулярной плоскости расположения антенн, так как антенны в точках A, B, C, D не располагаются в одной плоскости, о чем свидетельствует условие V A,B,C,D >0 в формуле изобретении.

Наиболее близким к заявляемому является дальномерно-разностно-дальномерный способ определения координат источника радиоизлучения и реализующее его устройство (7), принятый в качестве прототипа.

Способ основан на приеме сигнала тремя антеннами, измерении значений двух разностей времен приема сигнала ИРИ антеннами, измерении двух значений плотности потока мощности сигнала ИРИ, последующей обработке результатов измерений с целью вычисления координат точки, через которую проходит линия положения ИРИ.

Этот способ предполагает выполнение следующих операций:

Располагают три антенны в вершинах треугольника АВС;

Принимают сигнал на все три антенны;

Измеряют две разности времен t AC и t BC приема сигнала ИРИ антеннами;

Измеряют плотности потока мощности P 1 и Р 2 сигнала в точках размещения антенн 1 и 2;

Вычисляют значения разностей дальностей от ИРИ до пар антенн с использованием выражений r AC =C t AC , r BC =C t BC , r AB = r AC - r BC , где С - скорость распространения электромагнитной волны;

Вычисляют координаты по полученной формуле.

В соответствии с (7) в состав устройства, реализующего способ, входит:

Три антенны;

Два измерителя разности времен;

Два измерителя плотности потока мощности;

Вычислительный блок;

Блок индикации.

Прототипу свойственны следующие недостатки:

1) Практическая сложность осуществления способа в связи с отсутствием возможности измерении разностей времен приема сигнала ИРИ только антеннами (измерительные радиоприемники в блок-схеме отсутствуют).

2) Необходимость сведения сигналов ИРИ с разнесенных на несколько километров антенн в одну точку для измерения двухвходовыми измерителями, что является существенной и не решенной авторами патента проблемой.

3) Не адаптирован к оборудованию радиоконтрольных постов (избыточны два измерителя разности времен, два измерителя плотности потока мощности, вычислительный блок, блок индикации), имеющихся в филиалах федеральных округов радиочастотной службы РФ, а поэтому не может быть там использован.

4) Применяемые приемные антенны могут быть только изотропными, так как в формулах вычисления координат отсутствуют параметры диаграмм их направленности.

Целью настоящего изобретения является разработка способа определения координат местоположения ИРИ двумя радиоконтрольными постами, что позволит применить такой способ практически во всех филиалах федеральных округов Радиочастотной службы Российской Федерации.

Эта цель достигается с помощью признаков, указанных в формуле изобретения, общих с прототипом: способ определения координат местоположения источников радиоизлучения, основанный на приеме сигналов ИРИ антеннами, измерении уровней и разности времени приема сигнала от ИРИ в нескольких точках пространства сканирующими радиоприемными устройствами и преобразованных в систему уравнений, и отличительных признаков: для определения координат местоположения ИРИ используют два одинаковых стационарных радиоконтрольных поста, один из которых принимают за ведущий, соединяя с другим линией связи, калибруют измеритель величины запаздывания прихода сигналов на посты, используя эталонные РЭС с известными параметрами сигналов и координатами местоположения, затем на постах осуществляют квазисинхронное сканирование и измерение уровней сигналов на заданных фиксированных частотах настройки и величину запаздывания прихода сигналов ПРИ, а затем передачу их на базовый пост, где вычисляют отношение уровней и разность запаздывания прихода сигналов ИРИ с учетом результатов калибровки измерителей, а также составляют два уравнения положения ИРИ, каждое из которых описывает окружность с радиусом равным расстоянию от поста до ИРИ, причем эти расстояния определяют через отношение уровней сигналов и разность времени приема сигнала, измеренных на постах с использованием только одной пары антенн с известными азимутом оси главного лепестка и диаграммой направленности, а координаты ИРИ определяют численным методом решения составленных уравнений. Заявляемый способ поясняется чертежами, на которых показаны:

На фиг.1 - размещение двух постов радиоконтроля и положение ИРИ, Е - истинное положение, Еф - фиктивное; a , b - углы положения оси главного лепестка ДНА; АВ - линия базы; АЕ, BE - линии азимутов a и b на истинное положение ИРИ; АЕф, ВЕф - линии азимутов аф и bф на фиктивный ИРИ;

На фиг.2 - блок-схема реализации предлагаемого способа,

Предлагаемый способ предполагает выполнение следующих операций:

1) Калибруют измеритель величины запаздывания прихода сигналов (ИВЗ) на посты, используя массив эталонных РЭС с известными параметрами сигналов и координатами местоположения. Каждая эталонная РЭС должна находиться в зоне ЭМД обоих постов. Их количество и распределение в зоне ЭМД должно быть достаточным для обеспечения заданной точности калибровки как по расстоянию, так и азимуту от постов.

2) На каждом посту измеряют уровни сигнала с помощью радиоприемника и величины запаздывания прихода сигналов ИРИ с помощью соответствующего измерителя, используя антенны поста с известной диаграммой направленности, перестраивая при этом приемник на заданные фиксированные частоты. Процедуру по измерению величин запаздывания прихода сигналов ИРИ выполняют аналогично п.1. Результаты заносятся в банк данных своего компьютера.

3) Пересылают по каналу связи устройства связи информацию из ведомого компьютера на ведущий.

4) Вычисляют разность величин запаздывания прихода сигналов на антенны постов как от эталонных РЭС, так и от ИРИ с учетом результатов по п.1, а также вычисляют отношение уровней сигналов от ИРИ, измеренных радиоприемниками постов.

5) Составляют систему двух уравнений, определяющих положение ИРИ, и решают ее численным методом, используя данные пункта 4.

Уравнения положения при этом будут иметь вид окружностей

где: r a , r b - расстояния от постов до искомого ИРИ, а 8- их разность (рис.1).

Квадраты отношений радиусов запишем через измеренные уровни сигналов как

Отношение квадратов расстояний, определяемое через разность уровней сигналов, измеренных на постах радиоконтроля А и В и выраженных в дБ, позволяет описать линию положения ПРИ, исключив при этом зависимость этой линии положения от мощности искомого источника радиоизлучения. При этом из (3), на основании вычисленной разности расстояний, определяются квадраты расстояний в виде:

и .

Так как окружности пересекаются в двух точках, симметричных относительно линии базы (см. фиг.1), то возникает неоднозначность координат ИРИ. Для снятия возникающей неоднозначности можно выполнить повторные измерения с использованием направленной (с известной ДНА), например, логопериодической или кардиоидной поворотной антеннами. Но этот вариант связан с большими временными затратами и сложностью автоматизации такого решения. В заявляемом способе определение координат ИРИ с одновременным устранением неоднозначности осуществляют посредством измерения уровней сигналов непосредственно на направленные антенны. При этом направленные антенны не поворачивают в направлении максимума излучаемого сигнала, но положение оси главного ее лепестка на обоих постах должно быть известно, а лепестки ориентированы примерно в противоположных направлениях относительно базы. Такое положение осей главных лепестков антенн показано на фиг.1. Зависимость ЭДС на выходе антенны Е() связана с напряженностью поля вблизи ее и углом , определяющим положение оси главного лепестка ДНА относительно азимута на ПРИ, может быть представлена как Е()=Ем (), где Ем - максимальная ЭДС, соответствующая направлению оси главного лепестка на источник, () - функция определяющая диаграмму антенны. Теперь отношение уровней сигналов для направленных антенн n ( a , b) можно представить через отношение уровней, получаемых от ненаправленных антенн n ab как, где

и - функция отношений ДНА.

Отсюда n ab =n( a , b)/ ( a , b) и квадраты радиусов (4) системы (1) будут представлены в виде:

Для решения системы уравнений (1) и (2), с учетом (5) и (6), необходимо определить углы a , b и знать (). Из фиг.1 они определяются как a = a - a , b = b - b , ,

где: аф = аф - a , bф = bф - b , a < /2, то ИРИ находится во второй полуплоскости (ниже линии базы). При априорно снятой неопределенности расположения ИРИ относительно линии базы (например, при выполнении операции поиска ИРИ силовыми структурами) применяют ненаправленную (например, штыревую или биконическую антенны) и вычисление координат ведут по формулам (1), (2) с учетом (3) и (4).

В состав заявляемого устройства, реализующего заявляемый способ, входят два одинаковых радиоконтрольных поста - РКП А и РКП Б, содержащие:

1. Антенны 1, 6;

2. Радиоприемники (РП) 2, 7;

3. Измерители величин запаздывания сигналов (ИВЗ) 3, 8;

4. Компьютеры 4, 9;

5. Устройства связи 5, 10.

Один из постов (для примера, пусть это пост РКП А) является ведущим. Выходы антенн 1, 6 подключены на входы сканирующих радиоприемников 2, 7, управляющие компьютеры 4, 9 соединены двунаправленными связями с устройством связи 5, 10, предназначенными для передачи информации, сканирующими приемниками 2, 7 и измерителями величины запаздывания прихода сигналов 3, 8, вход каждого из которых соединен с выходом соответствующего сканирующего приемника. Измеренные приемниками сигналы ИРИ поступают по двунаправленной связи в компьютер соответствующего поста. В блоках 3, 8 осуществляется измерение величины запаздывания прихода сигналов как эталонных РЭС для создания файла калибровки, используемого при расчете координат, так и сигналов ИРИ и передача измеренных величин по запросу компьютера в его базу данных. Под управлением компьютера ведущего поста все сведения с ведомого поста передаются по каналу связи устройства связи 5, 10 в компьютер ведущего поста. Там производится расчет координат по уравнениям положения ИРИ с учетом диаграмм направленности антенн и калибровочных файлов. Вычисления координат проводятся численным методом последовательных приближений. Таким образом, предложенный способ позволяет определять координаты ИРИ в отличие от прототипа:

1) лишь двумя стационарными постами радиоконтроля;.

2) прием сигнала ИРИ осуществляется только на две антенны;

3) используются направленные антенны с выраженными максимумами диаграммы направленности, а не с круговой диаграммой направленности;

4) измерение величин запаздывания прихода сигналов на антенны постов осуществляется в месте размещения антенн одновходовым измерителем, используя при этом не сигналы с выходов антенн непосредстенно, а используя усиленные и отфильтрованные сигналы с выходов радиоприемников;

5) вычисление разности измеренных величин запаздывания прихода сигнала осуществляется не двухвходовым измерителем, соединенным с выходом разнесенных антенна, а на одном компьютере ведущего поста с использованием при этом полученных путем измерения калибровочных файлов;

6) главный лепесток каждой из антенн располагают в разных полуплоскостях относительно линии базы. принимая за истинные лишь координаты, относящиеся к той полуплоскости относительно линии базы, в которой находится главный лепесток антенны с наибольшим уровнем принятого сигнала.

7) вычисление координат местоположения осуществляется численным методом;

8) при априорно снятой неопределенности расположения ИРИ относительно линии базы применяют ненаправленную (например, штыревую или биконическую антенны) и вычисление координат ведут по формулам (1), (2) с учетом (3) и (4). Это упрощает реализацию устройства по предлагаемому способу

Таких особенностей не выявлено ни в аналогах, ни в прототипе и свидетельствует о наличии в предлагаемом изобретении признаков новизны и соответствующего уровня изобретательности.

Литература.

1. Корнеев И.В., Ленцман В.Л. и др. Теория и практика государственного регулирования использования радиочастот и РЭС гражданского применения.

Сборник материалов курсов повышения квалификации специалистов радиочастотных центров федеральных округов. Книга 2. - СПб.: СПбГУТ. 2003.

2. Липатников В.А., Соломатин А.И., Терентьев А.В. Радиопеленгация. Теория и практика. Спб. ВАС, 2006 г. - 356 с.

3. Способ определения координат местоположения источников радиоизлучения. Заявка № 2009138071, опубл. 20.04.2011 г. Б.И. № 11. Авторы: Логинов Ю.И., Екимов О.Б., Рудаков Р.Н.

4. Разностно-дальномерный способ пеленгования источника радиоизлучения. Патент РФ № 2325666 С2. Авторы: Сайбель А.Г., Сидоров П.А.

5. Разнесенный разностно-дальномерный пеленгатор. Патент РФ № 2382378, С1. Авторы: Ивасенко А.В., Сайбель А.Г., Хохлов П.Ю.

6. Разностно-дальномерный способ определения координат источника радиоизлучения и реализующее его устройство. Патент РФ № 2309420. Авторы: Сайбель А.Г., Гришин П.С.

7. Дальномерно-разностно-дальномерный способ определения координат источника радиоизлучения и реализующее его устройство. Патент РФ № 2363010,С2, опубл. 27.10.2007 г. Авторы: Сайбель А.Г., Вайгель К.И

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Способ определения координат местоположения источников радиоизлучения (ИРИ), основанный на измерении уровней и разности времени прихода сигнала от ИРИ на разнесенные антенны сканирующими радиоприемными устройствами и преобразованных в систему уравнений, отличающийся тем, что используют два стационарных радиоконтрольных поста, один из которых принимают за ведущий, соединяя с другим линией связи, калибруют измеритель величины запаздывания прихода сигналов на посты, используя эталонные радиоэлектронные средства с известными параметрами сигналов и координатами местоположения, на постах осуществляют квазисинхронное сканирование для выявления ИРИ, а затем выполняяют измерение уровней сигналов на заданных фиксированных частотах настройки и величин запаздывания прихода сигналов ИРИ, передачу их на ведущий пост, где вычисляют отношение уровней и разность запаздывания прихода сигналов ИРИ с использованием результатов калибровки измерителей, а также составляют два уравнения, каждое из которых описывает окружность с радиусом, равным расстоянию от поста до ИРИ, причем эти расстояния определяют через отношение уровней сигналов и разность величин запаздывания прихода сигнала, измеренных на постах с использованием только одной пары антенн с известными азимутом осей главного лепестка и диаграммами направленности, главный лепесток каждой из которых расположен в разных полуплоскостях относительно линии базы, а координаты ИРИ определяют численным методом решения составленных уравнений, принимая за истинные лишь координаты, относящиеся к той полуплоскости относительно линии базы, в которой находится главный лепесток антенны с наибольшим уровнем принятого сигнала.

2. Устройство для определения координат местоположения источников радиоизлучения, содержащее, соединенные двунаправленными линиями связи, посты, включающие приемные антенны, сканирующие радиоприемники, управляемые компьютером, отличающееся тем, что содержит два одинаковых радиоконтрольных поста, один из которых является ведущим, и на каждом посту измеритель величины запаздывания прихода сигналов, причем выходы антенн подключены на входы сканирующих радиоприемников, управляющий компьютер соединен двунаправленными связями с устройством связи, сканирующим приемником и измерителем величины запаздывания прихода сигналов, вход которого соединен с выходом сканирующего приемника.

Существуют три основных метода определения пространственных координат объектов:

линий и поверхностей положения;

корреляционно-экстремальный;

счисления пути.

Но последние два в настоящее время применимы только для автономных навигационных систем, т.е. при определении местоположения на самом ЛА. Определение координат целей в настоящее время основывается на применении метода линий и поверхностей положения.

Общность физических основ радиодальнометрии и радиопеленгации находит выражение еще в том, что местоположение цели можно установить не только по ее дальности и углам, измеренным из одной точки О (рис. 1.3), но и путем измерения дальности или углов из разнесенных опорных точек и,(рис. 1.7). Наибольшее применение получили дальномерный, разностно-

дальномерный, угломерный (пеленгационный) и дальномерно-угломерный

(комбинированный) методы определения местоположения целей.


Рис. 1.7. Методы определения местоположения объектов:

а – дальномерный; б – разностно-дальномерный; в – пеленгационный (уг-

ломерный)

В радиолокации для определения местоположения цели (объекта) чаще всего применяют позиционный метод, основанный на использовании поверхностей или линий положения для определения места объекта в пространстве или на поверхности Земли. Поверхность положения представляет собой геометрическое место точек в пространстве, отвечающих условию постоянства параметра (измеряемой координаты относительно опорного пункта (дальности, угла и т.п.)).

Местоположение ЛА в пространстве находится как точка пересечения трех поверхностей положения (ПП). Пересечение двух поверхностей положения дает линию положения (ЛП), которая является геометрическим местом точек с постоянными значениями двух параметров. Чтобыопределить точку в пространстве, требуется пересечение трех поверхностей положения или линии и поверхности положения. В случае нахождения цели иопорных пунктов в одной плоскости достаточно двух ЛП (определения двухкоординат цели, которые измеряются двумя РЛУ) (рис. 1.7).

Дальномерный метод заключается в определении местоположения цели М

(рис. 1.7, а) измерением расстояний между целью и опорными пунктами ,.

Каждая поверхность положения представляет собой сферу с центром в опор-

ном пункте и радиусом, равным дальности. Так как точки М , ,находятся в одной плоскости, то поверхности положения переходят в окружности радиусамиис точкой пересечения на целиМ . Имеется еще одна точка пересечения окружностей, но неоднозначность измерений можно исключить.

Разностно-дальномерный метод (рис. 1.7, б) требует наличия на плоскости двух пар опорных пунктов ,и,. Один из них обычно общий

(). Каждая пара станций используется для получения ЛП в виде гипербол сфокусами в опорных пунктах. Эти линии строятся как геометрические места

точек с постоянной разностью расстояний: оти;оти. Точка пересечения гипербол совпадает с целью М.

Угломерный (пеленгационный) метод основан на использовании направленных свойств антенн. Этот метод реализуется посредством радиопеленгатора,установленного на объекте М, и двух радиомаяков, расположенных в опорныхпунктах и(рис. 1.7, в) с базой b.

Радиопеленгатор представляет собой радиоприемное устройство с направленной антенной, а радиомаяк - передающее устройство с ненаправленной антенной. Пеленгатор измеряет азимуты маякаимаяка, и так как ЛПс постоянными пеленгами (= const,= const) представляют собой прямые, проходящие под углами,к направлению юг - север, то они имеют одну точку пересечения, которая является искомой, т. е. совпадает с целью М.

Дальномерно-угломерный метод (рис. 1.2, 1.3, 1.8) требует применения только одной станции, содержащей радиодальномер и радиопеленгатор. Из точки стояния станции О дальномер определяет наклонную дальность цели, а пеленгатор устанавливает направление на цель, т. е. ее азимут α и угол места β.

Цель М находится на пересечении поверхности положения дальномера в виде шара радиуса и ЛП пеленгатора - в виде прямой с угловыми координатами α и β, проходящей через точку О. Этот метод наиболее характерен для радиолокации, а остальные методы - для радионавигации. Однако и в радиолокации местоположение цели определяют иногдаиз двух и более точек. Например, если обычная PЛС производит пеленгацию сбольшими ошибками, то прибегают к дальномерному методу, а если дальномерную часть РЛС нельзя использовать из-за сильных помех или вследствиеприменения пассивной радиолокации, то прибегают к пеленгационному методу.

Рис. 1.8. ПП при определении местоположения объекта позиционным (даль-

номерно-пеленгационным) методом

Таким образом, в радиолокации для определения местоположения объекта применяют позиционные методы, основанные на использовании ПП или ЛП. Выбор метода определяет количество РЛУ, входящих в систему.

Заключение

1. В отраженных от целей радиолокационных сигналах заложена вся информация о них, так как при отражении изменяются все параметры сигнала (амплитуда, частота, начальная фаза, длительность, спектр, поляризация и т.д.).

2. В современной радиолокации используются местные и глобальныеСК. Местные СК подразделяются на цилиндрические и сферические СК, глобальные СК – на географические и геосферические.

3. По принципам образования радиолокационных сигналов методы радиолокации разделяются на активные, полуактивные и пассивные. На практике часто их совмещают при проектировании радиолокационных систем.

4. В радиолокации для определения местоположения объекта применяют позиционные методы, основанные на использовании ПП или ЛП.

Выбор метода определяет количество РЛУ, входящих в систему.

Контрольные вопросы :

1. Принцип измерения дальности в радиолокации.

2. Принцип пеленгации в радиолокации.

3. Принцип измерения скорости в радиолокации.

4. Основные элементы сферической СК, используемой в радиолокации.

5. Основные элементы цилиндрической СК, используемой в радиолокации.

6. Основные элементы географической СК.

7. Основные элементы геоцентрической СК.

8. Сущность активных методов формирования радиолокационного сигнала.

9. Сущность полуактивного и пассивного методов формирования радиолокационного сигнала.

10. Сущность дальномерного и разностно-дальномерного методов определения местоположения объекта.

11. Сущность угломерного и дальномерно-угломерного методов определения местоположения объекта.

Задание на самостоятельную подготовку:

1. Изучить материалы лекции.

2. Подготовиться к контрольной работе по контрольным вопросам.

Литература:

1. Бакулев П.А. Радиолокационные системы: Учебник для вузов. –

М.: Радиотехника, 2004.

2. Белоцерковский Г.Б. Основы радиолокации и радиолокационные

устройства. – М.: Советское радио, 1975.

1. Угломерный, угломерно-дальномерный и разностно-дальномерный методы определения местоположения источников радиоизлучений.

1.1 Общая характеристика методов .

В зависимости от параметра электромагнитного поля, используемого при определении местоположения РЭС, различают: амплитудные, временные, фазовые и частотные методы. По измеряемым параметрам электромагнитного поля могут быть определены геометрические величины : пеленг, расстояние до РЭС, разность расстояний от РЭС до двух точек приема.

Измеренным геометрическим величинам соответствуют линии положения РЭС на плоскости (ЛП) или поверхности положения (ПП) в пространстве.

Форма ЛП или ПП и определяющие их соотношения зависят от метода определения местоположения (МП) (рис.1).

Рис.1 Формы и соотношения для линий и поверхностей положения.

Например, для дальномерной системы: М – источник ИРИ (РЭС); О 1 – средство разведки (навигационная точка НТ) ; геометрическая постоянная

P = R = const .

ЛП:х 2 + у 2 = R 2 – концентрическая окружность с центром в НТ.

ПП:х 2 + у 2 + Z 2 + R 2 – сфера с центром в НТ.

Определение: Геометрическое место точек возможного положения РЭС на плоскости (в пространстве), для которых геометрическая величина, определяющая местоположение объекта, есть постоянная, называется линией (поверхностью) положения.

Для однозначного определения МП необходимо, чтобы в области нахождения РЭС пересекалось не менее 2 х линий или не менее трех поверхностей положения (одна из которых, поверхностьЗемли).

В настоящее время применяются следующие методы определения МП излучающих РЭС: угломерный, разностно-дальномерный, суммарно-дальномерный, угломерно-дальномерный, дальномерный, комбинированный.

Рассмотрим некоторые из них.

1.2 Угломерный (пеленгационный) метод основан на определении МП, как точки пересечения ЛП, соответствующих измеренным в двух разнесенных точках приема пеленгами (рис.2).

Рис.2 Угломерный метод определения местоположения ИРИ на плоскости.

Для определения МП «и» на плоскости достаточно измерить j аз1 и j аз2 . Тогда по теореме синусов:

;

;

где d – база, о 1 и о 2 – точки приема (НТ)

Для определения МП «и» в пространстве (рис.3) измеряются азимутальные углы j аз1 j аз2 и угол места в одной из точек приема. Либо наоборот – углы места j ум1 и j ум2 в двух точках приема и азимутв одной из них.

Рис.3 Угломерный метод определения местоположения ИРИ в пространстве.

Тогда, например:

Важнейшей оценкой, определяющей выбор способа определения МП, является погрешность измерений. Однако непосредственному измерению в аппаратуре подвергаются электрические параметры с характерной для данной системы погрешностью.Погрешности связаны следующей функциональной цепочкой:

s э ® s р ® s л ® s Д ,

где s э – ошибка определения электрического параметра;

s р – ошибка определения геометрическогопараметра;

s л -ошибка определения ЛП (ПП);

s Д -ошибка определения МП.

Ошибки определения линейного и геометрического параметров связаны соотношением:

s лр = К л s р , где К л – коэффициент линейной ошибки (определяется выбранным методом определения МП).

Например, для угломерного метода (плоскостной случай):

Для рассматриваемого рисунка Д=Д 1 , а - ошибка определения угла.

Она связана с ошибкой определения электрического параметра, например, фазы. В свою очередь

Анализ показывает, что наибольшая точность определения МП будет при a @ 110 о и расположению РЭС на нормали к середине базы при относительно небольших Д.

Наихудшая точность соответствует направлениям на РЭС, близким к направлению базы.

Точность определения МП может быть увеличена при многократном пеленговании (10-15 пеленгов), но при этом возникает опасность ложных пеленгов (рис.4)

Рис.4 Возникновение ложных пеленгов

Здесь наряду с определением 3 х истинных источниковИ 1 , И 2 , И 3 обнаруживается 6 ложных (ЛИ).

Исключение ЛП возможно за счет опознавания источников путем сравнения по параметрам сигналов (f , t u , T u ), либо путем взаимокорреляционной обработки сигналов, принимаемых в о 1 , о 2 .

Достоинства метода – простота.

Недостатки метода – необходимость согласования обзора из 2 х точек изависимость ошибок от положения источника.

1.3 Разностно-дальномерный метод основан на измерении относительного запаздывания сигналов, принимаемых в 3 х пунктах приема, и нахождении ЛП (гипербол), а также вычислении координат точки пересечения ЛП (рис.5)

Рис.5 Разностно-дальномерный способ определения местоположения

Здесь А 1 , А 2 , А 3 –разнесенные точки наблюдения, принадлежащие различным базам А 1 , А 2 , d 12 и А 2 , А 3 , d 23 . Фокусы гипербол совпадают с точками наблюдения. Разности расстояний, определяемые путем измерения относительного запаздывания сигналов, будут:

P 12 =const= Д 1 - Д 2 и P 23 =const= Д 2 - Д 3 .

Они являются параметрами гипербол, по которым гиперболы строятся. (Гипербола – геометрическое место точек, для каждой из которых разность расстояний до фокусов есть величина постоянная (рис.1)

Пространственное положения источника ЭМИ определяется по трем разностям дальностей, измеренных в 3 х , 4 х приемных пунктах. МП источника ЭМИ – точка пересечения трех гиперболоидов вращения.

Линейная ошибка метода:

, где - СКО определения Р.

В свою очередь;

j - угол под которым видна база А 1 А 2 из точки И

Обычно базы (А 1 А 2) и (А 2 А 3) располагаются не на одной линии а под a =60 о -90 о

Для определения временных задержек D t 12 и D t 23 используют, например, передний фронт импульса сигнала РЭС.

Для уменьшения s Л базу нужно увеличивать. Точность определения МП данным методом высокая (десятки м).

Рассматриваемый метод применяется в пассивных импульсных (временных) и корреляционно-базовых системах определения местоположения источников ЭМИ.

При использовании пассивных разностно-дальномерных систем также возможно обнаружение ложных несуществующих источников ЭМИ в тех случаях, когда источник излучает периодические сигналы с малым периодом следования (с малой скважностью). На временном интервале, равном разности времени распространения сигнала от источника до приемника, укладывается несколько периодов излучаемых сигналов.

В результате система измеряет большое количество разностей дальностей и определяет соответственно большое количество гиперболических поверхностей. Многие из них являются ложными.

Устранить подобную неоднозначность можно путем разнесения источников по угловым координатам, т.е. совместным применением разностно-дальномерного и триангуляционного методов.

Помимо рассмотренных находят применение комбинации методов: угломерно-дальномерный и угломерно-разностно-дальномерный (рис.6,7) .

Рис.6 Дальномерно-угломерный способ

Рис.7 Угломерно-разностно-дальномерный способ

2. Погрешность определения местоположения источника

радиоизлучения

Установим связь между ошибкой олределения МП и линейными ошибкам,справедливую для любого метода (рис.8)

Рис.8 Определение ошибки местоположения

Здесь Р 1 и Р 2 истинные ЛП для геометрических параметров Р 1 и Р 2 ,

Р 1 + D Р 1 и Р 2 + D Р 2 – ЛП измеренные, отстоящие от истинных на величины линейных ошибок D n 1 и D n 2 ; М – истинное МП объекта, М ¢ - найденное (измеренное); r – ошибка МП объекта.

Из D МОМ ¢ можно найти:

r 2 = a 2 + в 2 ± 2ав - ошибка МП s Д минимальна при b =90 о.

В РРТР широко распространены угломерный и угломерно-дальномерный методы, как единственные методы, позволяющие однозначно определять МП.

Недостатком угломерного метода является зависимость ошибки МП от дальности и сравнительно большие значения ошибок.

В последнее время все чаще используется гиперболический метод. Его достоинства:

  1. Высокая точность определения МП;
  2. Отсутствие необходимости в точной ориентации антенн;
  3. Возможность использования слабонаправленных антенн (широкая зона обзора);
  4. Возможность использования больших высот для носителя аппаратуры РРТР и, следовательно, большая дальность действия.

Недостатки:

  1. Невозможность определения МП источника немодулированного колебания;
  2. Необходимость временной синхронизации между пунктами приема с точностью до 10 -8 с;
  3. Зависимость точности от вида модуляции (лучше для остроконечной АКФ модулирующего сигнала);
  4. Затраты времени на измерения. В отличие от пеленгатора, где результат – пеленг, в РДС формируются выборки сигналов. Они передаются со всех постов на общий пост вычисления координат, где определяются соответствующие задержки, а по ним МП.

Для определения МП ИРИ с произвольными видами модуляции более предпочтительны угломерные системы на основе пеленгаторов.