Откуда будут брать энергию космические аппараты будущего? Общие сведения об энергоснабжении космических аппаратов Батареи для систем электроснабжения космических аппаратов





Владельцы патента RU 2598862:

Использование: в области электротехники для электроснабжения космических аппаратов от первичных источников разной мощности. Технический результат - повышение надежности электроснабжения. Система электроснабжения космического аппарата содержит: группу солнечных батарей прямого солнечного света (1), группу солнечных батарей отраженного солнечного света (7), генерирующий контур (8), стабилизатор напряжения (2), зарядное устройство (3), разрядное устройство (4), аккумуляторную батарею (5), выпрямительное устройство (9), контроллер заряда аккумуляторной батареи (10) и потребителей (6). Переменное напряжение с генерирующего контура (8) преобразуется в постоянное в блоке (9) и поступает на первый вход контроллера заряда аккумуляторной батареи (10). Постоянное напряжение от солнечных батарей отраженного солнечного света (7) поступает на второй вход контроллера заряда аккумуляторной батареи (10). Суммарное напряжение от генерирующего контура и солнечных батарей отраженного солнечного света с первого выхода контроллера (10) попадает на второй вход аккумуляторной батареи (5). Со второго выхода контроллера на первый вход аккумуляторной батареи (5) поступают сигналы управления переключателями (15-21), имеющими контакты 1-3, и выключателями (22-25), имеющими контакты 1-2. Количество управляемых коммутационных аппаратов зависит от числа аккумуляторов в батарее. Для подзаряда выбранного аккумулятора (11-14) на соответствующих переключателях их первые контакты размыкаются с третьим и замыкаются со вторым, на соответствующих выключателях первый и второй контакты замыкаются. Подключенный таким образом ко второму входу батареи соответствующий аккумулятор подзаряжается номинальным зарядным током до поступления команды от контроллера (10) на смену очередного аккумулятора. Потребитель (6) получает питание от оставшихся аккумуляторов, в обход отключенного, с первого выхода батареи (5). 5 ил.

Изобретение относится к космической технике и может быть использовано в составе космических аппаратов, стабилизированных вращением.

Известна система электроснабжения космического аппарата с общими шинами (аналог), которая содержит солнечные батареи (первичный источник энергии), аккумуляторную батарею, потребителей. Недостатком данной системы является то, что напряжение в данной системе является нестабилизированным. Это ведет к потерям энергии в кабельных сетях и во встроенных индивидуальных стабилизаторах потребителей .

Известна система электроснабжения космического аппарата с разделенными шинами и с параллельным включением стабилизатора напряжения (аналог), которая содержит зарядное устройство, разрядное устройство, аккумуляторную батарею. Недостатком ее является невозможность использования в ней экстремального регулятора мощности солнечных батарей .

Наиболее близким по технической сущности к предлагаемой системе является система электроснабжения космического аппарата с разделенными шинами и с последовательно-параллельным включением стабилизатора напряжения 2 (прототип), которая также содержит солнечные батареи прямого солнечного света 1, зарядное устройство 3, разрядное устройство 4, аккумуляторную батарею 5 (фиг. 1) . Недостатком этой системы электроснабжения является отсутствие возможности получения, преобразования и накопления электрической энергии от источников разной мощности, таких как энергия магнитного поля Земли и энергия отраженного солнечного света от поверхности Земли.

Целью изобретения является расширение возможностей системы электроснабжения космических аппаратов по получению, преобразованию и накоплению электроэнергии от различных первичных источников разной мощности, что позволяет увеличить срок активного существования и энерговооруженность космических аппаратов .

На фиг. 2 изображена система электроснабжения космического аппарата, стабилизированного вращением, на фиг. 3 - аккумуляторная батарея, содержащая управляемые контроллером коммутационные аппараты; на фиг. 4 - внешний вид космического аппарата, стабилизированного вращением, на фиг. 5 схематично показан один из вариантов движения космического аппарата, стабилизированного вращением, по орбите.

Система электроснабжения космического аппарата, стабилизированного вращением, содержит группу солнечных батарей 7, предназначенных для преобразования отраженного от Земли солнечного света в электрическую энергию, генерирующий контур 8, представляющим собой совокупность проводников (обмотку), расположенных вдоль корпуса космического аппарата, в которых наводится электродвижущая сила за счет вращения космического аппарата в вокруг своей оси в магнитном поле Земли, выпрямительным устройством 9, контроллер заряда аккумуляторной батареи от источников электроэнергии разной мощности 10, аккумуляторную батарею 5, содержащую управляемые контроллером коммутационные аппараты 15-25, осуществляющие подключение или отключение отдельных аккумуляторов 11-14 к контроллеру 9 для их подзаряда малым током (фиг. 2).

Система функционирует следующим образом. В процессе вывода космического аппарата на орбиту он закручивается таким образом, чтобы ось вращения аппарата и солнечные батареи прямого солнечного света были ориентированы на Солнце (фиг. 4). Во время движения вращающегося космического аппарата по орбите генерирующий контур пресекает линии индукции магнитного поля Земли со скоростью вращения космического аппарата вокруг своей оси. В результате по закону электромагнитной индукции в генерирующем контуре наводится электродвижущая сила

где µ o - магнитная постоянная, Н - напряженность магнитного поля Земли, S в - площадь генерирующего контура, N c - количество витков в контуре, ω - угловая частота вращения.

При замыкании генерирующего контура на нагрузку в цепи потребитель-генерирующий контур протекает ток. Мощность генерирующего контура зависит от вращающего момента космического аппарата вокруг своей оси

где J KA - момент инерции космического аппарата.

Таким образом, генерирующий контур является дополнительным источником электроэнергии на борту космического аппарата.

Переменное напряжение с генерирующего контура 8 выпрямляется на блоке 9 и поступает на первый вход контроллера заряда аккумуляторной батареи 10. Постоянное напряжение от солнечных батарей отраженного солнечного света 7 поступает на второй вход контроллера заряда аккумуляторной батареи 10. Суммарное напряжение с первого выхода контроллера 10 попадает на второй вход аккумуляторной батареи 5. Со второго выхода контроллера на первый вход аккумуляторной батареи 5 поступают сигналы управления переключателями 15-21, имеющими контакты 1-3, и выключателями 22-25, имеющими контакты 1-2. Количество управляемых коммутационных аппаратов зависит от числа аккумуляторов в батарее. Для подзаряда выбранного аккумулятора (11-14) на соответствующих переключателях их первые контакты размыкаются с третьим и замыкаются со вторыми, на соответствующих выключателях первый и второй контакты замыкаются. Подключенный таким образом ко второму входу батареи соответствующий аккумулятор подзаряжается малым током до поступления команды от контроллера 10 на смену очередного аккумулятора. Потребитель получает питание от оставшихся аккумуляторов в обход отключенного с первого выхода батареи 5.

При нахождении космического аппарата на орбите в положении 1 (фиг. 4, 5) солнечные батареи отраженного солнечного света ориентированы на Землю. В этот момент входящее в систему электроснабжения космического аппарата зарядное устройство 3 получает электроэнергию от солнечных батарей прямого солнечного света 1, а контроллер заряда аккумулятора 10 получает электроэнергию от солнечных батарей отраженного солнечного света 7 и генерирующего контура 8. В положении космического аппарата 2 солнечные батареи прямого солнечного света 1 остаются направленными на Солнце, в то время как солнечные батареи отраженного солнечного света частично затеняются. В этот момент зарядное устройство 3 системы электроснабжения космического аппарата продолжает получать электроэнергию от солнечных батарей прямого солнечного света, а контроллер 10 теряет часть энергии от блока 7, но продолжает получать энергию от блока 8 через выпрямитель 9. В положении космического аппарата 3 все группы солнечных батарей затенены, зарядное устройство 3 не получает электроэнергию от солнечных батарей 1, а бортовые потребители космического аппарата получают электроэнергию от аккумуляторной батареи. Контроллер заряда аккумуляторной батареи продолжает получать энергию от генерирующего контура 8, подзаряжая очередной аккумулятор. В положение космического аппарата 4 солнечные батареи прямого солнечного света 1 вновь освещаются Солнцем, в то время как солнечные батареи отраженного солнечного света частично затеняются. В этот момент зарядное устройство 3 системы электроснабжения космического аппарата продолжает получать электроэнергию от солнечных батарей прямого солнечного света, а контроллер 10 теряет часть энергии от блока 7, но продолжает получать энергию от блока 8 через выпрямитель 9.

Таким образом, система электроснабжения космического аппарата, стабилизированного вращением, способна получать, преобразовывать и накапливать: а) энергию прямого и отраженного от солнечного света; б) кинетическую энергию вращения космического аппарата в магнитном поле Земли. В остальном функционирование предлагаемой системы аналогично известной.

Технический результат - увеличение срока активного существования и энерговооруженности космического аппарата, достигается за счет использования в составе системы электроснабжения космического аппарата микроконтроллерного зарядного устройства, позволяющей осуществить зарядку аккумуляторной батареи от источников электрической энергии разной мощности (отраженного солнечного света и энергии магнитного поля Земли).

Практическая реализация функциональных узлов предлагаемого изобретения может быть выполнена следующим образом.

В качестве генерирующего контура может быть использована трехфазная двухслойная обмотка с изолированным медным проводом, что позволит приблизить форму кривой электродвижущей силы к синусоиде . В качестве выпрямителя может быть использована мостовая схема трехфазного выпрямителя с маломощными диодами типа Д2 и Д9, что позволит снизить пульсацию выпрямленного напряжения . В качестве контроллера заряда аккумуляторной батареи может быть использован микроконтроллер МАХ 17710. Он может работать с нестабильными источниками, имеющими диапазон выходных мощностей от 1 мкВт до 100 мВт. Устройство имеет встроенный повышающий преобразователь для заряда элементов питания от источников с типовым значением выходного напряжения 0.75 В и встроенный регулятор для защиты батарей от перезаряда . В качестве аккумуляторной батареи, содержащей управляемые контроллером коммутационные аппараты, могут быть использованы литий-ионные аккумуляторные батареи с подсистемой выравнивания напряжения аккумуляторов (системы балансировки). Она может быть выполнена на основе контроллера MSP430F1232 .

Таким образом, отличительные признаки предлагаемого устройства способствуют достижению поставленной цели.

Источники информации

1. Аналоговый мир Maxim. Новые микросхемы / Группа компаний симметрон // Выпуск №2, 2013. - 68 с.

2. Грилихес В.А. Солнечная энергия и космические полеты / В.А. Грилихес, П.П. Орлов, Л.Б. Попов - М.: Наука, 1984. - 211 с.

3. Каргу Д.Л. Системы электроснабжения космических аппаратов / Д.Л. Каргу, Г.Б. Стеганов [и др.] - СПб.: ВКА им. А.Ф. Можайского, 2013. - 116 с.

4. Кацман М.М. Электрические машины / М.М. Кацман. - учеб. пособие для учащихся спец. техникумов. - 2-е изд., перераб. и доп. - М.: Высш. Шк., 1990. - 463 с.

5. Прянишников В.А. Электроника. Курс лекций / В.А. Прянишников - СПб.: ООО «Крона принт», 1998. - 400 с.

6. Рыкованов А.Н. Системы питания Li-ion аккумуляторных батарей / А.Н. Рыкованов // Силовая Электроника. - 2009. - №1.

7. Чилин Ю.Н. Моделирование и оптимизация в энергетических системах КА / Ю.Н. Чилин. - СПб.: ВИКА, 1995. - 277 с.

Система электроснабжения космического аппарата, содержащая группу солнечных батарей прямого солнечного света, зарядное устройство, получающее электроэнергию от солнечных батарей прямого солнечного света, разрядное устройство, питающее потребителей от аккумуляторной батареи, стабилизатор напряжения, питающий потребителей от солнечной батареи прямого солнечного света, отличающаяся тем, что дополнительно содержит группу солнечных батарей, предназначенных для преобразования отраженного от Земли солнечного света в электрическую энергию, генерирующий контур, представляющий собой совокупность проводников (обмотку), расположенных на корпусе космического аппарата, в которых наводится электродвижущая сила за счет вращения космического аппарата вокруг своей оси в магнитном поле Земли, выпрямительное устройство, а также содержит контроллер заряда аккумуляторной батареи от источников электроэнергии разной мощности, аккумуляторную батарею, дополнительно содержащую управляемые контроллером коммутационные аппараты, осуществляющие подключение или отключение отдельных аккумуляторов к контроллеру для их подзаряда.

Похожие патенты:

Изобретение относится к космической технике и может быть использовано для обеспечения электропитания космических аппаратов (КА) и станций. Технический результат - использование системы терморегулирования для получения дополнительной энергии.

Изобретение относится к области электротехники. Автономная система электропитания содержит солнечную батарею, накопитель электроэнергии, зарядно-разрядное устройство и нагрузку, состоящую из одного или нескольких стабилизаторов напряжения с подключенными к их выходам конечными потребителями электроэнергии.

Изобретение относится к электротехнической промышленности и может быть использовано при проектировании автономных систем электропитания искусственных спутников Земли (ИСЗ). Технический результат - повышение удельных энергетических характеристик и надежности автономной системы электропитания ИСЗ. Предлагается способ питания нагрузки постоянным током в автономной системе электропитания искусственного спутника Земли от солнечной батареи и комплекта из вторичных источников электроэнергии - аккумуляторных батарей, содержащих Nакк аккумуляторов, соединенных последовательно, заключающийся в стабилизации напряжения на нагрузке, проведении заряда и разряда аккумуляторных батарей через индивидуальные зарядные и разрядные преобразователи, при этом разрядные преобразователи выполнены без вольтодобавочных узлов, для чего число аккумуляторов Nакк в каждой аккумуляторной батарее выбирают из соотношения: Nакк≥(Uн+1)/Uакк.мин, где Nакк - число аккумуляторов в последовательной цепи каждой аккумуляторной батареи; Uн - напряжение на выходе автономной системы электропитания, В; Uакк.мин - минимальное разрядное напряжение одного аккумулятора, В, зарядные преобразователи выполнены без вольтодобавочных узлов, для чего напряжение в рабочей точке солнечной батареи выбирают из соотношения:Uрт>Uакк.макс·Nакк+1, где Uрт - напряжение в рабочей точке солнечной батареи в конце гарантированного ресурса ее работы, В; Uакк.макс - максимальное зарядное напряжение одного аккумулятора, В, при этом рассчитанное число аккумуляторов Nакк дополнительно увеличивают исходя из соотношения: Nакк≥(Uн+1)/Uакк.мин+Nотказ, где Nотказ - число допустимого отказа аккумуляторов, а стабилизацию напряжения на нагрузке и заряд аккумуляторных батарей проводят с использованием экстремального регулирования напряжения солнечной батареи.

Изобретение относится к области электротехники. Технический результат заключается в расширении эксплуатационных возможностей системы, увеличении его нагрузочной мощности и обеспечении максимальной бесперебойности работы при поддержании оптимальных параметров работы аккумуляторной батареи при питании потребителей постоянным током.

Изобретение относится к области солнечной энергетики, в частности к непрерывно следящим за Солнцем солнечным установкам как с концентраторами солнечного излучения, так и с плоскими кремниевыми модулями, предназначенным для питания потребителей, например, в районах ненадежного и децентрализованного электроснабжения.

Изобретение относится к электротехнической промышленности и может быть использовано при проектировании автономных систем электропитания искусственных спутников Земли (ИСЗ).

Изобретение относится к системам поворота солнечной батареи (СПСБ) космического аппарата (КА). Изобретение предназначено для размещения элементов СПСБ для вращения солнечной батареи большой мощности и передачи электроэнергии с солнечной батареи на КА.

Изобретение относится к области преобразования солнечной энергии и её передачи наземным потребителям. Космическая электростанция содержит солнечный коллектор (1) лепесткового типа, корпус станции (2) и пучок (3) СВЧ-антенн. Коллектор (1) выполнен из пластин (панелей) фотоэлектрических преобразователей - как основных, так и вспомогательных. Пластины имеют прямоугольную и треугольную форму. Их соединения выполнены в виде автоматических крючков и петель, которые при развёртывании коллектора соединяются посредством многолепесткового механизма. В сложенном виде коллектор (1) имеет форму куба. Антенны пучка (3) фокусируют СВЧ-энергию на усилитель, передающий эту энергию на наземные электростанции. Технический результат изобретения направлен на повышение эффективности преобразования и передачи энергии потребителям на обширных территориях Земли. 16 ил.

Использование: в области электротехники для электроснабжения космических аппаратов от первичных источников разной мощности. Технический результат - повышение надежности электроснабжения. Система электроснабжения космического аппарата содержит: группу солнечных батарей прямого солнечного света, группу солнечных батарей отраженного солнечного света, генерирующий контур, стабилизатор напряжения, зарядное устройство, разрядное устройство, аккумуляторную батарею, выпрямительное устройство, контроллер заряда аккумуляторной батареи и потребителей. Переменное напряжение с генерирующего контура преобразуется в постоянное в блоке и поступает на первый вход контроллера заряда аккумуляторной батареи. Постоянное напряжение от солнечных батарей отраженного солнечного света поступает на второй вход контроллера заряда аккумуляторной батареи. Суммарное напряжение от генерирующего контура и солнечных батарей отраженного солнечного света с первого выхода контроллера попадает на второй вход аккумуляторной батареи. Со второго выхода контроллера на первый вход аккумуляторной батареи поступают сигналы управления переключателями, имеющими контакты 1-3, и выключателями, имеющими контакты 1-2. Количество управляемых коммутационных аппаратов зависит от числа аккумуляторов в батарее. Для подзаряда выбранного аккумулятора на соответствующих переключателях их первые контакты размыкаются с третьим и замыкаются со вторым, на соответствующих выключателях первый и второй контакты замыкаются. Подключенный таким образом ко второму входу батареи соответствующий аккумулятор подзаряжается номинальным зарядным током до поступления команды от контроллера на смену очередного аккумулятора. Потребитель получает питание от оставшихся аккумуляторов, в обход отключенного, с первого выхода батареи. 5 ил.

М. А. ПЕТРОВИЧЕВ , А. С. ГУРТОВ СИСТЕМА ЭНЕРГОСНАБЖЕНИЯ БОРТОВОГО КОМПЛЕКСА КОСМИЧЕСКИХ АППАРАТОВ Утверждено Редакционно-издательским советом университета в качестве учебного пособия САМАРА Издательство СГАУ 2007 УДК 629.78.05 ББК 39.62 П306 ЦИ ОНАЛЬ НЫ ПР ТЕТНЫЕ Е Н А О РИ ОЕКТЫ Инновационная образовательная программа "Развитие центра компетенции и подготовка специалистов мирового уровня в области аэрокосмических и геоинформационных технологий” ПР И Рецензенты: доктор технических наук А. <...> К о п т е в, зам. начальника отдела ГНП РКЦ «ЦСКБ - Прогресс» С. И. Миненко П306 Петровичев М.А. <...> Система энергоснабжения бортового комплекса космических аппаратов: учеб. пособие / М.А. Петровичев , А.С. Гуртов. <...> Учебное пособие предназначено студентам специальности 160802 «Космические аппараты и разгонные блоки». <...> УДК 629.78.05 ББК 39.62 ISBN 978-5-7883-0608-7 2 © Петровичев М. А., Гуртов АС, 2007 © Самарский государственный аэрокосмический университет, 2007 Система электроснабжения бортового комплекса космических аппаратов Из всех видов энергии электрическая является наиболее универсальной. <...> . Система электроснабжения (СЭС) КА является одной из важнейших систем, обеспечивающих работоспособность КА . <...> Надежность СЭС во многом определяется 3 резервированием всех видов источников, преобразователей, коммутационной аппаратуры и сети. <...> Структура системы электроснабжения КА Основной системой электроснабжения КА является система постоянного тока. <...> Для парирования пиков нагрузки используют буферный источник . <...> Впервые на многоразовом КА «Шаттл» использована безбуферная система электроснабжения. <...> 4 Система распределения Преобразо ватель Преобраз ователь Сеть Потребитель Первичный источник Буферный источник Рис. <...> Структура аппарата системы электроснабжения космического Буферный источник характеризуется тем, что суммарная производимая им энергия равна нулю. <...> Для согласования характеристик аккумулятора с первичным источником и сетью используют <...>

Система_энергоснабжения_бортового_комплекса_космических_аппаратов.pdf

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «САМАРСКИЙ ГОСУДАРСТВЕННЫЙ АЭРОКОСМИЧЕСКИЙ УНИВЕРСИТЕТ имени академика С.П. КОРОЛЕВА» М. А. ПЕТРОВИЧЕВ, А. С. ГУРТОВ СИСТЕМА ЭНЕРГОСНАБЖЕНИЯ БОРТОВОГО КОМПЛЕКСА КОСМИЧЕСКИХ АППАРАТОВ Утверждено Редакционно-издательским советом университета в качестве учебного пособия С А М А Р А Издательство СГАУ 2007

Стр.1

УДК 629.78.05 ББК 39.62 П306 Инновационная образовательная программа "Развитие центра компетенции и подготовка специалистов мирового уровня в области аэрокосмических и геоинформационных технологий” Рецензенты: доктор технических наук А. Н. К о п т е в, зам. начальника отдела ГНП РКЦ «ЦСКБ - Прогресс» С. И. М и н е н к о Петровичев М.А. П306 Система энергоснабжения бортового комплекса космических аппаратов: учеб. пособие / М.А. Петровичев, А.С. Гуртов. – Самара: Изд-во Самар. гос. аэрокосм. ун-та, 2007. – 88 с.: ил. ISBN 978-5-7883-0608-7 Рассматривается роль и значение системы электроснабжения для космического аппарата, составные элементы этой системы, особое внимание уделяется рассмотрению принципов действия и устройства источников питания, особенностям их использования для космической техники. Пособие дает достаточно обширный справочный материал, который может использоваться при курсовом и дипломном проектировании студентами неэлектрических специальностей. Учебное пособие предназначено студентам специальности 160802 «Космические аппараты и разгонные блоки». Оно также может быть полезно молодым специалистам ракетно-космической отрасли. Подготовлено на кафедре летательных аппаратов. УДК 629.78.05 ББК 39.62 ISBN 978-5-7883-0608-7 2 © Петровичев М. А., Гуртов АС, 2007 © Самарский государственный аэрокосмический университет, 2007 П Р И О Р И Т Т К Е Т О Н Ы Е Н А Ц И О А Н Л Ь Н Ы Е П Р Е Ы

Стр.2

Система электроснабжения бортового комплекса космических аппаратов Из всех видов энергии электрическая является наиболее универсальной. По сравнению с другими видами энергии она имеет ряд преимуществ: электрическая энергия легко преобразуется в другие виды энергии, КПД электрических установок значительно выше КПД установок, работающих на других видах энергии, электрическую энергию легко передавать по проводам к потребителю, электрическая энергия легко распределяется между потребителями. Автоматизация процессов управления полетом любых космических аппаратов (КА) немыслима без электрической энергии. Электрическая энергия используется для приведения в действие всех элементов устройств и оборудования КА (двигательная группа, органов управления, систем связи, приборного комплекса, отопления и т. д.). Система электроснабжения (СЭС) КА является одной из важнейших систем, обеспечивающих работоспособность КА. Основные требования, предъявляемые к СЭС: необходимый запас энергии для совершения всего полета, надежная работа в условиях невесомости, необходимая надежность, обеспечиваемая резервированием (по мощности) основного источника и буфера, отсутствие выделений и потребления газов, способность работать в любом положении в пространстве, минимальная масса, минимальная стоимость. Вся электроэнергия, необходимая для выполнения программы полета (для штатного режима, а также для некоторых нештатных), должна находиться на борту КА, поскольку восполнение ее возможно только для обитаемых станций. Надежность СЭС во многом определяется 3

Ростех
ОАО "Концерн "Радиоэлектронные технологии"
КРЭТ разработал новый тип аккумуляторов для работы в космосе
Разработка конкурентоспособной космической техники требует перехода на новые типы аккумуляторов, отвечающих требованиям систем электроснабжения перспективных космических аппаратов.
В наши дни космические аппараты используются для организации систем связи, навигации, телевидения, изучения погодных условий и природных ресурсов
Земли, освоения и изучения дальнего космоса.
Одним из главных условий к подобным аппаратам является точная ориентация в космосе и коррекция параметров движения. Это значительно повышает требования к системе электроснабжения аппарата. Проблемы энерговооруженности космических аппаратов, и, в первую очередь, разработки по определению новых источников электроэнергии, имеют первостепенное значение на мировом уровне.
В настоящее время основными источниками электроэнергии для космических аппаратов являются солнечные и аккумуляторные батареи.
Солнечные батареи по своим характеристикам достигли физического предела. Дальнейшее их совершенствование возможно при использовании новых материалов, в частности, арсенида галлия. Это позволит в 2-3 раза увеличить мощность солнечной батареи или уменьшить ее размер.
Среди аккумуляторных батарей для космических аппаратов сегодня широко используются никель-водородные аккумуляторы. Однако энергомассовые характеристики этих аккумуляторов достигли своего максимума (70-80 Вт*ч/кг). Дальнейшее их улучшение очень ограничено и, кроме того, требует больших финансовых затрат.
В связи с этим, в настоящее время на рынке космической техники происходит активное внедрение литий-ионных аккумуляторов (ЛИА).
Характеристики литий-ионных батарей гораздо выше по сравнению с аккумуляторами других типов при аналогичном сроке службы и количестве циклов заряд-разряд. Удельная энергия литий-ионных аккумуляторов может достигать 130 и более Вт*ч/кг, а коэффициент полезного действия по энергии - 95%.
Немаловажным фактом является и то, что ЛИА одного типоразмера способны безопасно работать при их параллельном соединении в группы, таким образом, несложно формировать литий-ионные аккумуляторные батареи различной емкости.
Одним из главных отличий ЛИА от никель-водородных батарей является наличие электронных блоков автоматики, которые контролируют и управляют процессом заряда-разряда. Они также отвечают за нивелирование разбаланса напряжений единичных ЛИА, и обеспечивают сбор и подготовку телеметрической информации об основных параметрах батареи.
Но все же основным преимуществом литий-ионных аккумуляторов считается снижение массы по сравнению с традиционными батареями. По оценкам специалистов, применение литий-ионных аккумуляторов на телекоммуникационных спутниках мощностью 15-20 кВт позволит снизить массу батарей на 300 кг. Учитывая то, что стоимость вывода на орбиту 1 кг полезной массы составляет около 30 тысяч долларов, это позволит значительно снизить финансовые затраты.
Одним из ведущих российских разработчиков подобных аккумуляторных батарей для космических аппаратов является ОАО "Авиационная электроника и коммуникационные системы" (АВЭКС), входящее в КРЭТ. Технологичный процесс изготовления литий-ионных аккумуляторов на предприятии позволяет обеспечить высокую надежность и снижение себестоимости.

Введение

энергоснабжение солнечный батарея космический

В настоящее время одним из приоритетов стратегического развития научно-технического потенциала республики является создание космической отрасли. Для этого в Казахстане в 2007 году создано Национальное космическое агентство («Казкосмос»), деятельность которого, в первую очередь, направлена на разработку и внедрение целевых космических технологий и развитие космической науки в интересах социально-экономического развития страны.

Научные космические исследования в Казкосмосе проводятся, в основном, в АО «Национальный центр космических исследований и технологий» (АО «НЦКИТ»), в состав которого входят четыре научно-исследовательских института: Астрофизический институт им. В.Г. Фесенкова, Институт ионосферы, Институт космических исследований, Институт космической техники и технологий. АО «НЦКИТ» имеет большую экспериментальную базу: парк современной измерительной аппаратуры, полигоны, обсерватории, научные центры для проведения фундаментальных и прикладных научных исследований в области космической деятельности по утвержденным приоритетам.

Акционерное общество «Национальный центр космических исследований и технологий» АО «НЦКИТ» организовано путем реорганизации Республиканского государственного предприятия на праве хозяйственного ведения «Центр астрофизических исследований» и его дочерних предприятий на основании постановления Правительства Республики Казахстан №38 от 22.01.2008 г.

Основным предметом деятельности АО является осуществление научно-исследовательской, опытно-конструкторской и производственно-хозяйственной деятельности в области космических исследований и технологий.

Одной из важнейших бортовых систем любого космического аппарата, которая в первую очередь определяет его тактико-технические характеристики, надежность, срок службы и экономическую эффективность, является система электроснабжения. Поэтому проблемы разработки, исследования и создания систем электроснабжения космических аппаратов имеют первостепенное значение.

Автоматизация процессов управления полетом любых космических аппаратов (КА) немыслима без электрической энергии. Электрическая энергия используется для приведения в действие всех элементов устройств и оборудования КА (двигательная группа, органов управления, систем связи, приборного комплекса, отопления и т.д.).

В целом, система электроснабжения генерирует энергию, преобразует и регулирует её, запасает её для периодов пикового потребления или работы в тени, а также распределят её по космическому аппарату. Подсистема электроснабжения может также преобразовывать и регулировать напряжение или обеспечивать ряд уровней напряжений. Она часто включает и выключает аппаратуру и, для повышения надёжности, защищает от короткого замыкания и изолирует неисправности. Конструкция подсистемы зависит от космической радиации, которая вызывает деградацию солнечных батарей. Срок службы химической батареи часто ограничивает срок службы космического аппарата.

Актуальными проблемами являются изучение особенностей функционирования источников электроэнергии космического назначения. Изучение и освоение космического пространства требуют разработки и создания космических аппаратов различного назначения. В настоящее время наибольшее практическое применение получают автоматические непилотируемые космические аппараты для формирования глобальной системы связи, телевидения, навигации и геодезии, передачи информации, изучения погодных условий и природных ресурсов Земли, а также исследования дальнего космоса. Для их создания необходимо обеспечить очень жесткие требования по точности ориентации аппарата в космосе и коррекции параметров орбиты, а это требует повышения энерговооруженности космических аппаратов.

1. Общие сведения об АО «НЦКИТ»

Проведение научно-исследовательских и опытно-конструкторских работ по созданию аппаратуры и программного обеспечения для систем дифференциальной коррекции и навигационной аппаратуры потребителей.

Объектно-ориентированное моделирование и разработка программно-технического обеспечения системы крупномасштабного 3D-моделирования с использованием спутниковых навигационных технологий и лазерной дальнометрии.

Разработка инженерных моделей комплекса научного оборудования для проведения бортовых измерений и накопления целевой научной информации и программное обеспечение для их фунционирования.

Создание научно-методического и программного обеспечения решения задач комплексного анализа и прогнозирования развития космической техники в РК.

Создание программно-математического обеспечения и имитационных моделей космических аппаратов и подсистем.

Разработка экспериментальных образцов приборов, аппаратуры, узлов и подсистем микроспутников.

Создание научно-методического обеспечения и нормативно-технической базы решения задач технического регулирования.

Регламентация требований к разработке, проектированию, созданию, эксплуатации космической техники, обеспечению ее безопасности, оценки и подтверждения соответствия.

Согласно постановлению Правительства №38 от 22 января 2008 года «О реорганизации Республиканского государственного предприятия «Центр астрофизических исследований» Национального космического агентства Республики Казахстан и его дочерних государственных предприятий», РГП «Центр астрофизических исследований» и его дочерние предприятия «Институт ионосферы», «Астрофизический институт им. В.Г. Фесенкова», «Институт космических исследований» реорганизованы путем слияния и преобразования в акционерное общество «Национальный центр космических исследований и технологий» со стопроцентным участием государства в уставном капитале.

Свидетельство о государственной регистрации АО «НЦКИТ» - №93168-1910-АО, идентификационный №080740009161, от 16.07.2008 г., зарегистрировано в Департаменте юстиции г. Алматы Министерства юстиции Республики Казахстан

.2 Общая характеристика организации

Акционерное общество «Национальный центр космических исследований и технологий» зарегистрировано 16.07.2008 г.

В период с 2004 г. по 15.07.2008 г. АО НЦКИТ юридически являлся Республиканским государственным предприятием «Центр астрофизических исследований» (на праве хозяйственного ведения), которое было создано в соответствии с постановлением Правительства Республики Казахстан от 5 марта 2004 года №280 «Вопросы некоторых республиканских государственных предприятий Министерства образования и науки Республики Казахстан». РГП было создано на основе реорганизации и слияния республиканских государственных казенных предприятий «Институт космических исследований», «Институт ионосферы» и «Астрофизический институт имени В.Г. Фесенкова», которым был придан юридический статус дочерних государственныхпредприятий.

Постановлением Правительства Республики Казахстан от 29 мая 2007 года №438 «Вопросы Национального космического агентства» РГП «Центр астрофизических исследований» (на праве хозяйственного ведения) было передано в ведение Национального космического агентства Республики Казахстан.

Институт космических исследований Академии наук Казахской ССР организован согласно Постановлению Кабинета Министров Казахской ССР №470 от 12 августа 1991 года. Основатель и первый директор Института - Лауреат Государственной премии СССР, кавалер Орденов Ленина, Трудового Красного Знамени, «Парасат», академик НАН РК СултангазинУмирзакМахмутович (1936 г. - 2005 г.). В январе 2011 года Институту было присвоено имя академика У.М. Султангазина.

Предметом деятельности Института являлось проведение фундаментальных и прикладных исследований в рамках государственных, отраслевых, международных программ и проектов, а также выполнение работ по грантам отечественных и зарубежных фондов в области дистанционного зондирования Земли (ДЗЗ), космического мониторинга, геоинформационного моделирования, космического материаловедения.

Институт космических исследований, как головная организация, координировал исследования институтов НАН РК и других ведомственных организаций при разработке и реализации всех четырех казахстанских программ научных исследований и экспериментов на борту орбитального комплекса «Мир» с участием космонавта Аубакирова Т.О. (1991 г.) и с участием космонавта Мусабаева Т.А. - (1994, 1998 гг.), на борту Международной космической станции - с участием космонавта Мусабаева Т.А. (2001 г.).

Институт космических исследований имени академика У.М. Султангазина входил в состав АО «НЦКИТ» в качестве отдельного юридического лица в статусе дочернего товарищества с ограниченной ответственностью.

С 2014 года Институт и административный аппарат АО «НЦКИТ» были объединены в единую структуру с сохранением кадрового состава и направлений исследований.

1.3 Виды деятельности АО «НЦКИТ»

Координация, сопровождение и осуществление научно-исследовательской деятельности. Фундаментальные и прикладные космические исследования

Формирование основных направлений и планов научных исследований, представление законченных научных исследований в Национальное космическое агентство Республики Казахстан;

Представление в Национальное космическое агентство Республики Казахстан выводов и рекомендаций, основанных на ежегодных отчетах научных организаций о научной и научно-технической деятельности;

Сопровождение и Осуществление опытно-конструкторской и производственно-хозяйственной деятельности

Создание географических информационных систем на основе методов аэрокосмической съемки;

Прием, обработка, распространение, эквивалентный обмен и продажа данных дистанционного зондирования земли из космоса;

Разработка и эксплуатация космических средств различного назначения, космических систем связи, навигации и дистанционного зондирования;

Оказание инжиниринговых и консалтинговых услуг

Проведение маркетинговых исследований

Осуществление инновационной деятельности

Информирование о деятельности Национального космического агентства - Республики Казахстан и пропаганда достижений науки

Осуществление пропаганды достижений науки и космических технологий, организация. Проведение международных и республиканских съездов, сессий, конференций, семинаров, совещаний, выставок; издание научных журналов, трудов и информирования о деятельности Национального космического агентства Республики Казахстан

Подготовка высококвалифицированных научных кадров. Защита интеллектуальной собственности

Разработка нормативно-правовой документации

Кадровый состав

Всего - 450 квалифицированных специалистов и ученых.

В их числе - 27 доктора наук, 73 кандидатов наук, 2 академика, 2 члена-корреспондента и 3 доктора PHD.

Структура центра

Департамент дистанционного зондирования Земли

Основные направления исследований:

Развитие технологий приема, архивации, обработки и отображения данных ДЗЗ. Проведение фундаментальных и прикладных научных исследований в области изучения спектральных характеристик объектов земной поверхности, космического мониторинга сельскохозяйственных угодий и окружающей среды, чрезвычайных ситуаций (паводков, наводнений, пожаров), тематического дешифрирования спутниковых данных различного спектрального, пространственного и временного разрешения на основе анализа многолетних рядов данных ДЗЗ и состояния земной поверхности.

Проведение подспутниковых исследований. Создание отраслевых и региональных ситуационных центров космического мониторинга чрезвычайных ситуаций.

Департамент геоинформационного моделирования

Разработка численных моделей переноса коротковолновых и тепловых излучений в атмосфере для коррекции космических изображений и расчетов физических параметров атмосферы по данным спутниковой информации.

Создание геоинформационных моделей «риск-анализа» для определения степени влияния природных и техногенных факторов на развитие аварийных ситуаций на магистральных трубопроводах.

Создание автоматизированных методов и технологий цифровой фотограмметрии, методов и вычислительных алгоритмов интерферометрического анализа данных дистанционного зондирования.

Департамент космического материаловедения и приборостроения

Создание технологий производства конструкционных и функциональных материалов аэрокосмического назначения, а также изделий из них.

Разработка качественных, аналитических и численных методов исследования нестационарных задач динамики искусственных и естественных небесных тел.

Разработка новых математических моделей и методов обеспечения программного движения космических аппаратов.

Отдел информационно-образовательного обеспечения (г. Астана)

Организация повышения квалификации и переподготовки специалистов для космической отрасли Казахстана.

Центр приема космической информации (г. Алматы) и Научно-образовательный центр космического мониторинга коллективного пользования (г. Астана)

Регулярный прием, архивация и обработка данных космической съемки с космических аппаратов Aqua/MODIS, Terra/MODIS, SuomiNPP (США).

Имеется международная сертификация.

ДТОО «ИИ» (Институт ионосферы)

Предметом деятельности ДТОО «Институт ионосферы» является проведение фундаментальных, поисковых и прикладных исследований в области солнечно-земной физики и геодинамики: ионосферы и геомагнитного поля, космической погоды, радиационного мониторинга околоземного космического пространства, наземно-космического геодинамического и геофизического мониторинга земной коры Казахстана, создания системы прогнозирования месторождений полезных ископаемых, геодезии и картографии.

ДТОО «АФИФ» (Астрофизический институт им. Фесенкова)

ДТОО «ИКТТ» (Институт космической техники и технологий)

Дочернее товарищество с ограниченной ответственностью «Институт космической техники и технологий» (далее - ДТОО «Институт космической техники и технологий») создано по приказу Национального космического агентства Республики Казахстан №65/ОД от 17.08.2009 года.

ДТОО «Институт космической техники и технологий» было зарегистрировано 23 декабря 2009 года. Единственным Учредителем ДТОО «Институт космической техники и технологий» является Акционерное общество «Национальный центр космических исследований и технологий».

2. Общие сведения об энергоснабжении космических аппаратов

Геометрию космических аппаратов, конструкцию, массу, срок активного существования во многом определяет система энергоснабжения космических аппаратов. Система энергоснабжения или иначе именуемая как система энергопитания (СЭП) космических аппаратов - система космического аппарата, обеспечивающая электропитание других систем, является одной из важнейших систем. Выход из строя системы энергоснабжения ведет к отказу всего аппарата.

В состав системы энергопитания обычно входят: первичный и вторичный источник электроэнергии, преобразующие, зарядные устройства и автоматика управления.

Первичные источники энергии

В качестве первичных источников используются различные генераторы энергии:

солнечные батареи;

химические источники тока:

аккумуляторы;

гальванические элементы;

топливные элементы;

радиоизотопные источники энергии;

ядерные реакторы.

В состав первичного источника входит не только собственно генератор электроэнергии, но и обслуживающие его системы, например система ориентации солнечных батарей.

Часто источники энергии комбинируют, например, солнечную батарею с химическим аккумулятором.

Топливные элементы

Топливные элементы имеют высокие показатели по массогабаритным характеристикам и удельной мощности по сравнению с парой солнечные батареи и химический аккумулятор, устойчивы к перегрузкам, имеют стабильное напряжение, бесшумны. Однако они требуют запаса топлива, потому применяются на аппаратах со сроком нахождения в космосе от нескольких дней до 1-2 месяцев.

Используются в основном водород-кислородные топливные элементы, так как водород обеспечивает наивысшую калорийность, и, кроме того, образовавшаяся в результате реакции вода может быть использована на пилотируемых космических аппаратах. Для обеспечения нормальной работы топливных элементов необходимо обеспечить отвод образующихся в результате реакции воды и тепла. Ещё одним сдерживающим фактором является относительно высокая стоимость жидкого водорода и кислорода, сложность их хранения.

Радиоизотопные источники энергии

Радиоизотопные источники энергии используют в основном в следующих случаях:

высокая длительность полёта;

миссии во внешние области Солнечной системы, где поток солнечного излучения мал;

разведывательные спутники с радаром бокового обзора из-за низких орбит не могут использовать солнечные батареи, но испытывают высокую потребность в энергии.

Автоматика системы энергопитания

В нее входят устройства управления работой энергоустановки, а также контроля ее параметров. Типичными задачами являются:поддержание в заданных диапазонах параметров системы: напряжения, температуры, давления, переключения режимов работы, например, переход на резервный источник питания; распознавание отказов, аварийная защита источников питания в частности по току; выдача информации о состоянии системы для телеметрии и на пульт космонавтов. В некоторых случаях возможен переход с автоматического на ручное управление либо с пульта космонавтов, либо по командам из наземного центра управления.

.1 Солнечные батареи принцип действия и устройство

В основе устройства солнечной батареи лежат генераторы напряжения, составленные из ФЭП - устройств для непосредственного преобразования солнечной световой энергии в электрическую. Действие ФЭП основано на внутреннем фотоэффекте, т.е. на появлении ЭДС под действием солнечного света.

Полупроводниковый фотоэлектрический преобразователь (ФЭП) - это устройство, в котором осуществляется прямое преобразование энергии солнечного излучения в электрическую энергию. Принцип работы ФЭП основан на взаимодействии солнечного света с кристаллом полупроводника, в процессе которого фотоны освобождают в кристалле электроны - носители электрического заряда. Специально созданные под действием так называемого p-n-перехода области с сильным электрическим полем улавливают освободившиеся электроны и разделяют их таким образом, что в цепи нагрузки возникает ток и соответственно электрическая мощность.

Теперь рассмотрим несколько подробнее, хотя и со значительными упрощениями, этот процесс. Начнем с рассмотрения поглощения света в металлах и чистых полупроводниках. При попадании потока фотонов на поверхность металла часть фотонов отражается, а оставшаяся часть поглощается металлом. Энергия второй части фотонов увеличивает амплитуду колебаний решетки и скорость хаотического движения свободных электронов. Если энергия фотона довольно велика, то ее может оказаться достаточно, чтобы выбить из металла электрон, сообщив ему энергию, равную или большую, чемработа выхода данного металла. Это внешний фотоэффект. При меньшей энергии фотона его энергия в конечном счете целиком идет на нагрев металла.

Иная картина наблюдается при воздействии потока фотонов на полупроводники. В отличие от металлов кристаллические полупроводники в чистом виде (без примесей), если на них не воздействуют никакие внешние факторы (температура, электрическое поле, излучение света и т.д.), не имеют свободных электронов, оторванных от атомов кристаллической решетки полупроводника

Рис. 2.1 - Поглощение света в металлах и полупроводниках: 1 - заполненная (валентная) зона, 2 - запрещенная зона, 3 - зона проводимости, 4 - электрон

Однако, поскольку полупроводниковый материал всегда находится под воздействием какой-либо температуры (чаще всего комнатной), небольшая часть электронов может за счет тепловых колебаний приобрести энергию, достаточную для отрыва их от своих атомов. Такие электроны становятся свободными и могут принимать участие в переносе электричества.

Атом полупроводника, лишившийся электрона, приобретает положительный заряд, равный заряду электрона. Однако место атома, не занятое электроном, может быть занято электроном соседнего атома. При этом первый атом становится нейтральным, а соседний - положительно заряженным. Освободившееся в связи с образованием свободного электрона место в атоме равноценно положительно заряженной частице, называемой дыркой.

Энергия, которой обладает электрон в связанном с атомом состоянии, лежит в пределах заполненной (валентной) зоны. Энергия свободного электрона относительно велика и лежит в более высокой энергетической зоне - зоне проводимости. Между ними лежит запрещенная зона, т.е. зона таких значений энергий, которые электроны данного полупроводникового материала не могут иметь ни в связанном, ни в свободном состоянии. Ширина запрещенной зоны для большинства полупроводников лежит в пределах 0,1 - 1,5 эВ. При больших значениях запрещенной зоны, чем 2,0 эВ, мы имеем дело с диэлектриками.

Если энергия фотона равна или превышает ширину запрещенной зоны, то происходят отрыв одного из электронов от своего атома и переброска его из валентной зоны в зону проводимости.

Увеличение концентрации электронов и дырок приводит к возрастанию проводимости полупроводника. Возникающая под действием внешних факторов проводимость тока в чистом монокристаллическом полупроводнике называется собственной проводимостью. С исчезновением внешних воздействий свободные электронно-дырочные пары рекомбинируют друг с другом и собственная проводимость полупроводника стремится к нулю. Идеально чистых полупроводников, которые обладали бы одной лишь собственной проводимостью, не существует. Обычно полупроводник обладает электронной (n-тип) или дырочной (p-тип) проводимостью.

Тип проводимости определяется валентностью атомов полупроводника и валентностью атомов активной примеси, внедренной в его кристаллическую решетку. Например, для кремния (IV группа Периодической системы Менделеева) активными примесями являются бор, алюминий, галлий, индий, таллий (III группа) или фосфор, мышьяк, сурьма, висмут (V группа). Кристаллическая решетка кремния имеет такую форму, при которой каждый атом кремния, находящийся в узле решетки, связан с четырьмя другими ближайшими атомами кремния так называемыми ковалентными или парноэлектронными связями.

Элементы V группы (доноры), внедренные в узлы кристаллической решетки кремния, имеют ковалентные «связи четырех своих электронов с четырьмя электронами соседних атомов кремния, а пятый электрон может быть легко освобожден. Элементы III группы (акцепторы), внедренные в узлы кристаллической решетки кремния, для образования четырех ковалентных связей притягивают электрон от одного из соседних атомов кремния, образуя тем самым дырку. Этот атом в свою очередь может притянуть электрон от одного из соседних ему атомов кремния и т.д.

ФЭП - это полупроводниковый фотоэлемент с запорным (вентильным) слоем, работа которого основана на только что рассмотренном фотоэффекте. Итак, механизм работы ФЭП заключается в следующем (рисунок 2.2).

Кристалл ФЭП состоит из p- и n-областей, имеющих соответственно дырочную и электронную проводимости. Между этими областями образуется p-n-переход (запорный слой). Его толщина 10-4 - 10-6 см.

Так как по одну сторону от p-n-перехода больше электронов, а по другую дырок, то каждый из этих свободных носителей тока будет иметь тенденцию диффундировать в ту часть ФЭП, где их недостаточно. В результате на p-n-переходе в темноте устанавливается динамическое равновесие зарядов и образуется два слоя объемных зарядов, причем со стороны p-области образуются отрицательный, а со стороны n-области положительный заряды.

Установившийся потенциальный барьер (или контактная разность потенциалов) будет препятствовать дальнейшей самодиффузии электронов и дырок через p-n-переход. Контактная разность потенциалов Uк направлена от n-области к p-области. Переход электронов из n-области в p-область требует затраты работы Uк · e, переходящей в потенциальную энергию электронов.

По этой причине все энергетические уровни в p-области подняты относительно энергетических уровней n-области на величину потенциального барьера Uк · е. На рисунке движение вверх по оси ординат соответствует росту энергии электронов и уменьшению энергии дырок.

Рис. 2.2 - Принцип действия ФЭП (точками обозначены электроны, кружочками - дырки)

Таким образом, потенциальный барьер является препятствием для основных носителей (в прямом направлении), а для неосновных носителей (в обратном направлении) никакого сопротивления не представляет.

Под действием солнечного света (фотонов определенной энергии) атомы полупроводника возбудятся, и в кристалле как в p-, так и n-областях возникнут дополнительные (избыточные) пары электрон-дырка (рисунок 2.2, б). Наличие же потенциального барьера в p-n-переходе обусловливает разделение дополнительных неосновных носителей (зарядов) так, что в n-области будут накапливаться избыточные электроны, а в p-области - избыточные дырки, не успевшие рекомбинировать до их подхода к p-n-переходу. При этом будет происходить частичная компенсация объемного заряда у p - n-перехода и возрастать создаваемое ими электрическое поле, направленное против контактной разности потенциалов, что вместе взятое ведет к снижению потенциального барьера.

В результате между электродами установится разность потенциалов Uф, которая по существу представляет собой фото-ЭДС. Если в цепь ФЭП включить внешнюю электрическую нагрузку, то в ней потечет электрический ток - поток электронов от n-области к p-области, где они рекомбинируют с дырками. Вольт-амперная и вольт-мощностная характеристики ФЭП представлены на рисунке 2.3, из которого очевидно, что для снятия с ФЭП максимальной электрической мощности необходимо обеспечить его работу в достаточно узком диапазоне выходных напряжений (0,35 - 0,45 В).

Масса 1 м2СБ 6…10 кг, из них 40% приходится на массу ФЭП. Из фотоэлементов, размеры которых в среднем составляют не более 20 мм, путем последовательного их соединения набирают генераторы напряжения до требуемого значения напряжения, например на номинал 27 В.

Рис. 2.3 - Зависимость напряжения и удельной мощности от плотности тока ФЭП

Генераторы напряжения, имеющие габаритные размеры приблизительно 100 х 150 мм, крепятся на панелях СБ и соединяются последовательно для получения необходимой мощности на выходе СЭП.

Кроме кремниевых ФЭП, которые до настоящего времени используются в большинстве солнечных КЭУ, наибольший интерес представляют ФЭП на основе арсенида галлия и сульфида кадмия. Они обладают более высокой рабочей температурой, чем кремниевые ФЭП (причем ФЭП па основе арсенида галлия имеют более высокий теоретический и практически достигнутый КПД). Необходимо отметить, что по мере увеличения ширины запрещенной зоны полупроводника увеличивается напряжение холостого хода и теоретический КПД ФЭП на его основе. Однако при ширине запрещенной зоны более 1,5 эВ КПД ФЭП начинает уменьшаться, так как все большая часть фотонов не может образовать пару электрон-дырка. Таким образом, имеется оптимальная ширина запрещенной зоны (1,4 - 1,5 эВ), при которой КПД ФЭП достигает максимально возможной величины.

3. Электрохимические космические энергоустановки

Электрохимический источник тока (ЭХИТ) является основой любой электрохимической КЭУ. Он включает в себя электроды, являющиеся, как правило, активными веществами, электролит, сепаратор и внешнюю конструкцию (сосуд). В качестве электролита для ЭХИТ, применяемых на КА, обычно используется водный раствор щелочи КОН.

Рассмотрим упрощенную схему и конструкцию серебряно-цинкового ЭХИТ (рисунок 3.1). Положительный электрод представляет собой проволочную сетку-токоотвод, па которую напрессовано порошкообразное металлическое серебро, спеченное затем в печи при температуре примерно 400°С, что придает электроду необходимую прочность и пористость. Отрицательный электрод - это напрессованная также на сетку-токоотвод масса, состоящая из окиси цинка (70 - 75%) и цинковой пыли (25 - 30%).

На отрицательном электроде (Zn) происходит реакция окислителя активного вещества до гидроокиси цинка Zn(OH)2, а на положительном (AgO) - реакция восстановления активного вещества до чистого серебра. Во внешнюю цепь идет отдача электроэнергии в виде потока электронов. В электролите же электрическая цепь замыкается потоком ионов ОНˉ от положительного электрода к отрицательному. Сепаратор необходим прежде всего для предотвращения соприкосновения (и отсюда короткого замыкания) электродов. Кроме того, он уменьшает саморазряд ЭХИТ и обязателен для обеспечения его обратимой работы на протяжении многих циклов заряд-разряд.

Рис. 3.1 Принцип действия серебряно-цинкового ЭХИТ:

Положительный электрод (AgO), 2 - электрическая нагрузка,

Отрицательный электрод (Zn), 4 - сосуд, 5 - сепаратор

Последнее связано с тем, что при недостаточной сепарации коллоидные растворы окислов серебра, достигающие отрицательного электрода, катодно восстанавливаются в виде тончайших серебряных нитей, направленных к положительному электроду, а ионы цинка также восстанавливаются в виде нитей, растущих в направлении к аноду. Все это может привести к короткому замыканию электродов на первых же циклах работы.

Наиболее подходящим сепаратором (разделителем) для серебряно-цинковых ЭХИТ является пленка из гидратцеллюлозы (целлофан), которая, набухая в электролите, уплотняет сборку, что препятствует оплыванию цинковых электродов, а также прорастанию игольчатых кристаллов серебра и цинка (дендритов). Сосуд серебряно-цинкового ЭХИТ изготавливается, как правило, из пластмассы (полиамидная смола или полистирол) и имеет прямоугольную форму. Для других типов ЭХИТ сосуды могут быть изготовлены, например, из никелированною железа. При заряде ЭХИТ происходил восстановление цинка и окиси серебра на электродах.

Итак, разряд ЭХИТ - это процесс отдачи электроэнергии во внешнюю цепь, а заряд ЭХИТ - процесс сообщения ему электроэнергии извне с целью восстановления первоначальных веществ из продуктов реакции. По характеру работы ЭХИТ делятся на гальванические элементы (первичные источники тока), которые допускают лишь однократное использование активных веществ, и электрические аккумуляторы (вторичные источники тока), которые допускают многократное использование активных веществ в связи с возможностью их восстановления путем заряда от постороннего источника электроэнергии.

В КЭУ на основе ЭХИТ используются электрические аккумуляторы с одноразовым или многоразовым режимами разряда, а также водородно-кислородные топливные элементы.

3.1 Химические источники тока

Электродвижущей силой (ЭДС) химических источников называется разность его электродных потенциалов при разомкнутой внешней цепи:

где и - соответственно потенциалы положительного и отрицательного электродов.

Полное внутреннее сопротивление Rхимического источника (сопротивление постоянной силе тока) состоит из омического сопротивления и сопротивления поляризации :

где - ЭДС поляризации; - сила тока разряда.

Сопротивление поляризации обусловлено изменением электродных потенциалов и при протекании тока и зависит от степени заряженности, силы разрядного тока, состава электродов и чистоты электролита.


;

,

где и и

.

Разрядная емкость Q (А·ч) химического источника есть количество электричества, отдаваемое источником во время разряда при определенных температуре электролита, окружающем давлении, силе раз рядного тока и конечном разрядном напряжении:

,

и в общем случае при постоянной во время разряда силе тока

где - текущее значение силы тока разряда, А; - время разряда, ч.


,

где и


.

В качестве химических источников тока рассмотрены серебряноцинковые, кадмиево-никелевые и никель-водородные аккумуляторные батареи.

3.2 Серебряно-цинковые аккумуляторные батареи

Серебряно-цинковые аккумуляторы благодаря меньшей массе и объему при той же емкости и меньшему внутреннему сопротивлению при заданном напряжении получили распространение в космическом электрооборудовании. Активным веществом положительного электрода аккумулятора является окись серебра AgO, а отрицательной пластины - металлический цинк. В качестве электролита используется водный раствор щелочи КОН плотностью 1,46 г./см3.

Заряд и разряд аккумулятора происходит в две ступени. При разряде на обеих ступенях на отрицательном электроде протекает реакция окисления цинка

2OH ˉ разряд → ZnO + H2O + 2e.

На положительном электроде в-две ступени протекает реакция восстановления серебра. На первой ступени двухвалентная окись серебра восстанавливается до одновалентной:

2AgO + 2e + H2Oразряд → Ag2O + 2OH ˉ.

ЭДС аккумулятора при этом равна 1,82.. 1,86 В, На второй ступени, когда аккумулятор разрядится примерно на 30%, происходит восстановление одновалентной окиси серебра до металлического серебра:

2O + 2e + H2Oразряд → 2Ag + 2OH ˉ.

ЭДС аккумулятора в момент перехода от первой ступени разряда до второй снижается до 1,52.. 1,56 В. Вследствие этого кривая 2 изменения ЭДС при разряде номинальным током (рисунок 3.2) имеет характерный скачок. При дальнейшем разряде ЭДС аккумулятора остается постоянной, пока аккумулятор не разрядится полностью. При заряде реакции протекает в две ступени. Скачок напряжения и ЭДС возникает, когда аккумулятор зарядится примерно на 30% (кривая1), В этом состоянии поверхность электрода покрывается двухвалентной окисью серебра.

Рис. 3.2 - ЭДС аккумулятора при заряде (1) и разряде (2)

В конце заряда, когда прекращается окисление серебра из одновалентного в двухвалентное во всей толще электрода, начинается выделение кислорода по уравнению

OH ˉ разряд → 2H2O + 4e +O2

ЭДС аккумулятора при этом повышается на 0,2…0,3 В (см. рисунок 5.1, пунктирный участок на кривой 1). Выделяющийся при перезарядке кислород ускоряет процесс разрушения целлофановых параметров аккумулятора и возникновения внутренних коротких замыканий.

В процессе заряда вся окись цинка может быть восстановлена до металлического цинка. При перезаряде восстанавливается окись цинка электролита, находящегося в порах электрода, а затем и в сепараторах отрицательных пластин, роль которых выполняют несколько слоев целлофановой пленки. Цинк выделяется в виде кристаллов, которые растут в сторону положительного электрода, образуя цинковые дендрита. Такие кристаллы способны протыкать целлофановые пленки и вызывать короткие замыкания электродов. Цинковые дендриты не вступают в обратные реакции. Опасны поэтому даже кратковременные перезаряды.

3.3 Кадмиево-никелевые аккумуляторные батареи

Активным веществом отрицательного электрода в кадмиево-никелевом аккумуляторе является металлический кадмий. Электролитом в аккумуляторе служит водный раствор едкого калия КОН плотностью 1,18… 1,40 г./см3.

В кадмиево-никелевом аккумуляторе используется окислительно-восстановительная реакция между кадмием и гидратом окиси никеля:

2Ni(OH)3 → Cd(OH)2 + 2Ni(OH)2

Упрощенно химическую реакцию на электродах можно записать следующим образом. На отрицательном электроде при разряде происходит окисление кадмия:

2e → Cd++

Ионы кадмия связываются с гидроксильными ионами щелочи, образуя гидрат кадмия:

2e + 2OH ˉ разряд → Cd(OH)2.

На положительном электроде при разряде восстанавливается никель с трехвалентного до двухвалентного:

2Ni(OH)3 + 2eразряд → 2Ni(OH)2 + 2OH ˉ.

Упрощение состоит в том, что состав гидроокиси не соответствует точно их формулам. Соли кадмия и никеля малорастворимы в воде, поэтому концентрация ионов Cd++, Ni++, Ni+++определяется концентрацией КОН, от которой в электролите косвенно зависит и величина ЭДС аккумулятора.

Электродвижущая сила только что заряженного аккумулятора равна 1,45 В.В течение нескольких суток после конца заряда происходит снижение ЭДС до 1,36 В.

3.4 Никель-водородные аккумуляторные батареи

Никель-водородные аккумуляторные батареи (НВАБ), обладая высокой надежностью, большими ресурсом и удельной энергией, отличными эксплуатационными показателями, найдут широкое применение в КА взамен никель-кадмиевых аккумуляторов.

Для работы НВАБ на низкой околоземной орбите (НОО) требуется ресурс порядка 30 тыс. циклов в течение пяти лет. Использование АБ на НОО с малой глубиной разряда (ГР) ведет к соответственному снижению гарантируемой удельной энергии (30 тыс. циклов может быть достигнуто при ГР 40%). Трехлетнее непрерывное циклирование в режиме НОО при ГР = 30% двенадцати стандартных НВАБ (RNH-30-1) емкостью 30 А · ч показали, что все НВАБ проработали стабильно 14 600 циклов.

Достигнутый уровень удельной энергии для НВАБ составляет в условиях околоземной орбиты 40 Вт · ч/кг при глубине разряда 100%, ресурс при ГР 30% составляет 30 тыс. циклов.

4/ Выбор параметров солнечных батарей и буферных накопителей

Исходные данные:

Предельная масса КА - Мп = до 15 кг;

Высота круговой орбиты - h = 450 км;

Масса целевой системы - не более 0,5 кг;

Передающая частота - 24 ГГц;

Потребляемое напряжение - 3.3 - 3.6 В;

Минимальная потребляемая мощность трансивера - 300 мВт;

Потребляемая мощность плазмено-ионного двигателя - 155 Вт;

Срок активного существования - 2-3 года.

4.1 Расчет параметров буферного накопителя

Расчет параметров буферного накопителя (БН) из аккумуляторных батарей и определение их состава ведется исходя из ограничений, накладываемых на аккумуляторы по силам зарядного и разрядного токов, интегральной емкости разряда, разовым глубинам разряда, надежности, температурных условий работы и т.д.

При расчете параметров никель-водородных аккумуляторов, воспользуемся следующими характеристиками и формулами [«Конструирование автоматических космических аппаратов» авторы: Д.И. Козлов, Г.Н. Аншаков, В.Ф. Агарков, Ю.Г. Антонов § 7.5], а также техническими характеристиками АБ HB-50 НИАИ Источник, информация о котором взята с сайта [#"justify">Электродвижущая сила только что заряженного аккумулятора равна 1,45 В.В течение нескольких суток после конца заряда происходит снижение ЭДС до 1,36 В.

·сила зарядного тока до 30 А;

·сила разрядного тока 12 - 50А в установившемся режиме и до 120 А в импульсном режиме до 1 минуты;

·максимальная глубина разряда до 54А·ч;

·при работе батарей (особенно в режимах циклирования большими силами тока заряда и разряда) необходимо обеспечить тепловой режим работы аккумуляторных батарей в диапазоне 10…30°С. С этой целью необходимо предусмотреть установку батарей в герметичном отсеке КА и обеспечить режим охлаждения каждого блока воздухом.

Используемые формулы для проведения расчетов параметров никель-кадмиевых аккумуляторов:

Напряжение химических источников электроэнергии отличается от ЭДС на значение падения напряжения во внутренней цепи, что определяется полным внутренним сопротивлением и протекающим током:

, (1)

, (2)

где и - разрядные и зарядные напряжения на источнике соответственно; и - сила токов разряда и заряда соответственно.

Для гальванических элементов одноразового применения напряжение определяется как разрядное.

Разрядная емкость Q (А·ч) химического источника есть количество электричества, отдаваемое источником во время разряда при определенных температуре электролита, окружающем давлении, силе разрядного тока и конечном разрядном напряжении:

, (3)

Номинальная емкость химического источника тока - это емкость, которую должен отдавать источник при оговоренных техническими условиями режимах работы. Для аккумуляторов КА за номинальную и силу тока разряда чаще всего принимают силу тока одно-двух или 10 часового режима разряда.

Саморазряд - бесполезная потеря емкости химическим источником при разомкнутой внешней цепи. Обычно саморазряд выражается в% за сутки хранения:

(4)

где и - емкости химического источника до и после хранения; Т - время хранения, сут.

Удельная энергия химического источника тока представляет собой отношение отдаваемой энергии к его массе:

(5)

Значение удельной энергии зависит не только от типа источника, но и от силы разрядного тока, т.е. от отбираемой мощности. Поэтому химический источник электроэнергии более полно характеризуется зависимостью удельной энергии от удельной мощности.

Расчет параметров:

Определим максимальное и минимальное время разряда из формулы :

Следовательно, максимальное время разряда:

;

минимальное время разряда:

.

Отсюда следует, что время разряда позволяет проектируемому спутнику использовать электрический ток в среднем в течении 167 мин или 2,8 часа, так как наша целевая установка использует 89 мА, время разряда будет не существенным, что положительно сказывается на обеспечение электрическим током других жизненно важных систем спутника.

Определим напряжение разряда и полное внутреннее сопротивление аккумулятора из формулы :

; (1)

(2)

.

Отсюда видно, что напряжение заряда в достаточной мере может обеспечиваться при помощи использования солнечных батарей, даже не большой площади.

Также можно определить саморазряд по формуле :

(4)

Возьмем за время работы аккумулятора Т = 0,923 ч, Q1 = 50 (А·ч) и Q2 = 6 (А·ч) за тридцать минут работы:

,

то есть при минимальном потреблении тока в 12 А, за 30 минут аккумуляторная батарея разредится на 95% при разомкнутой цепи.

Найдем удельную энергию химического источника по формуле :

,

то есть 1 кг химического источника может обеспечить 61,2 Вт в течении часа, что также подходит для нашей целевой установки, которая при работает при максимальной мощности 370 мВт.

4.2 Расчет параметров солнечных батарей

Для расчетов основных параметров СБ влияющих на конструкцию КА, его технических характеристик воспользуемся следующими формулами [«Конструирование автоматических космических аппаратов» авторы: Д.И. Козлов, Г.Н. Аншаков, В.Ф. Агарков, Ю.Г. Антонов § 7.5]:

Расчет параметров СБ сводится к определению ее площади и массы.

Расчет мощности СБ производится по формуле:

(6)

где - мощность СБ; Рн - среднесуточная мощность нагрузки (без учета собственных нужд СЭП); - время ориентации СБ на Солнце за виток; tT - время, в течение которого СБ не освещена; - КПД регулятора избытка мощности СБ, равный 0,85; - КПД регулятора разряда БН, равный 0,85; р.3 - КПД регулятора заряда БН, равный 0,9; - КПД аккумуляторных батарей БН, равный 0,8.

Площадь солнечной батареи рассчитывается по формуле:

(7)

где - удельная мощность СБ, принимаемая:

Вт/м2 при = 60°С и 85 Вт/м2 при = 110°С для материала ФЭП КСП;

Вт/м2 при = 60°С и 100 Вт/м2 при = 110°С для материала ФЭП;

Вт/м2 при = 60°С и 160 Вт/м2 при = 110°С для материала ФЭП Ga - As; - коэффициент запаса, учитывающий деградацию ФЭП из-за радиации, равный 1,2 для времени работы два-три года и 1,4 для времени работы пять лет;

Коэффициент заполнения, вычисляемый по формуле 1,12; - КПД СБ = 0,97.

Масса СБ определяется исходя из удельных параметров. В имеющихся в настоящее время конструкциях СБ удельная масса составляет = 2,77 кг/м2 для кремниевых и = 4,5 кг/м2 для арсенидгаллиевых ФЭП.

Масса СБ рассчитывается по формуле:

(8)

Для начала расчёта СЭП необходимо выбрать солнечные батареи. При рассмотрении различных СБ выбор пал на следующие: солнечные батареи организации ОАО «Сатурн» на основе GaAs фотопреобразователей со следующими характеристиками.

Основные параметры СБ

Параметр СБСБ на основе GaAs ФПСрок активного существования, лет15КПД при температуре 28°C, %28Удельная мощность, Вт/м2170Максимальная мощность, Вт/м2381Удельная масса, кг/м21.6Толщина ФЭП, мкм150 ± 20

Также для расчета понадобиться знать период обращения ИСЗ на низкой околоземной орбите, информация взята с сайта :

·в диапазоне от 160 км период обращения около 88 минут;

·до 2000 км период около 127 минут.

Для расчета возьмем усредненное значение - около 100 мин. При этом время освещенности солнечных панелей КА на орбите больше (около 60 мин), чем время нахождения их в тени около 40 мин.

Мощность нагрузки равна сумме требуемой мощности двигательной установки, целевой аппаратуры, мощности заряда и равна 220 Вт (значение взято с избытком 25 Вт).

Подставляя все известные значения в формулу , получаем:

,

.

Для определения площади панели СБ примем материал ФЭП Ga-Asпри рабочей температуре = 60°С, работе спутника 2-3 года и воспульзуемся формулой :

,

подставляя исходные данные, получим:

после проведения расчетов, получим

,

но с учетом не частого заряда аккумуляторной батареи, использования современных технологий в разработке других систем, а также с учетом того, что мощность нагрузки была взята с запасом около 25 Вт, возможно сократить площадь СБ до 3,6 м2

ЕВРАЗИЙСКИЙ НАЦИОНАЛЬНЫЙ УНИВЕРСИТЕТ

Им. Л.Н. Гумилева

Физико-технический факультет

Кафедра Космическая техника и технологии

ОТЧЕТ

ПО ПРОИЗВОДСТВЕННОЙ

ПРАКТИКЕ

АСТАНА 2016


Введение………………………………………………………………………...........3

1 Общие сведения об энергоснабжении космических аппаратов.……………....4

1.1 Первичные источники электроэнергии ………………………………4

1.2 Автоматика системы энергопитания..............................................….5

2 Солнечные космические энергоустановки …………..…………………..…......6

2.1 Солнечные батареи принцип действия и устройство………….….....6

3 Электрохимические космические энергоустановки…………………………..12

3.1 Химические источники тока………………………………………...13

3.2 Серебряно-цинковые аккумуляторные батареи…………………....15

3.3 Кадмиево-никелевые аккумуляторные батареи……………………16

3.4 Никель-водородные аккумуляторные батареи……………………..17

4 Выбор параметров солнечных батарей и буферных накопителей...………...18

4.1 Расчет параметров буферного накопителя…………………………18

4.2 Расчет параметров солнечных батарей……………………………..20

Заключение………………………………………………………………………….23

Список использованных источников……………………………………………...24

Спецификации...……………………………………………………………………25

ВВЕДЕНИЕ

Одной из важнейших бортовых систем любого космического аппарата, которая в первую очередь определяет его тактико-технические характеристики, надежность, срок службы и экономическую эффективность, является система электроснабжения. Поэтому проблемы разработки, исследования и создания систем электроснабжения космических аппаратов имеют первостепенное значение.

Автоматизация процессов управления полетом любых космических аппаратов (КА) немыслима без электрической энергии. Электрическая энергия используется для приведения в действие всех элементов устройств и оборудования КА (двигательная группа, органов управления, систем связи, приборного комплекса, отопления и т. д.).

В целом, система электроснабжения генерирует энергию, преобразует и регулирует её, запасает её для периодов пикового потребления или работы в тени, а также распределят её по космическому аппарату. Подсистема электроснабжения может также преобразовывать и регулировать напряжение или обеспечивать ряд уровней напряжений. Она часто включает и выключает аппаратуру и, для повышения надёжности, защищает от короткого замыкания и изолирует неисправности. Конструкция подсистемы зависит от космической радиации, которая вызывает деградацию солнечных батарей. Срок службы химической батареи часто ограничивает срок службы космического аппарата.

Актуальными проблемами являются изучение особенностей функционирования источников электроэнергии космического назначения. Изучение и освоение космического пространства требуют разработки и создания космических аппаратов различного назначения. В настоящее время наибольшее практическое применение получают автоматические непилотируемые космические аппараты для формирования глобальной системы связи, телевидения, навигации и геодезии, передачи информации, изучения погодных условий и природных ресурсов Земли, а также исследования дальнего космоса. Для их создания необходимо обеспечить очень жесткие требования по точности ориентации аппарата в космосе и коррекции параметров орбиты, а это требует повышения энерговооруженности космических аппаратов.

Общие сведения об энергоснабжении космических аппаратов.

Геометрию космических аппаратов, конструкцию, массу, срок активного существования во многом определяет система энергоснабжения космических аппаратов. Система энергоснабжения или иначе именуемая как система энергопитания (СЭП ) космических аппаратов - система космического аппарата, обеспечивающая электропитание других систем, является одной из важнейших систем. Выход из строя системы энергоснабжения ведет к отказу всего аппарата.

В состав системы энергопитания обычно входят: первичный и вторичный источник электроэнергии, преобразующие, зарядные устройства и автоматика управления.

1.1 Первичные источники энергии

В качестве первичных источников используются различные генераторы энергии:

Солнечные батареи;

Химические источники тока:

Аккумуляторы;

Гальванические элементы;

Топливные элементы;

Радиоизотопные источники энергии;

Ядерные реакторы.

В состав первичного источника входит не только собственно генератор электроэнергии, но и обслуживающие его системы, например система ориентации солнечных батарей.

Часто источники энергии комбинируют, например, солнечную батарею с химическим аккумулятором.

Топливные элементы

Топливные элементы имеют высокие показатели по массогабаритным характеристикам и удельной мощности по сравнению с парой солнечные батареи и химический аккумулятор, устойчивы к перегрузкам, имеют стабильное напряжение, бесшумны. Однако они требуют запаса топлива, потому применяются на аппаратах со сроком нахождения в космосе от нескольких дней до 1-2 месяцев.

Используются в основном водород-кислородные топливные элементы, так как водород обеспечивает наивысшую калорийность, и, кроме того, образовавшаяся в результате реакции вода может быть использована на пилотируемых космических аппаратах. Для обеспечения нормальной работы топливных элементов необходимо обеспечить отвод образующихся в результате реакции воды и тепла. Ещё одним сдерживающим фактором является относительно высокая стоимость жидкого водорода и кислорода, сложность их хранения.

Радиоизотопные источники энергии

Радиоизотопные источники энергии используют в основном в следующих случаях:

Высокая длительность полёта;

Миссии во внешние области Солнечной системы, где поток солнечного излучения мал;

Разведывательные спутники с радаром бокового обзора из-за низких орбит не могут использовать солнечные батареи, но испытывают высокую потребность в энергии.

1.2 Автоматика системы энергопитания

В нее входят устройства управления работой энергоустановки, а также контроля ее параметров. Типичными задачами являются: поддержание в заданных диапазонах параметров системы: напряжения, температуры, давления, переключения режимов работы, например, переход на резервный источник питания; распознавание отказов, аварийная защита источников питания в частности по току; выдача информации о состоянии системы для телеметрии и на пульт космонавтов. В некоторых случаях возможен переход с автоматического на ручное управление либо с пульта космонавтов, либо по командам из наземного центра управления.


Похожая информация.